
1

Ayai Design Document

 Marjorie Bartell Ben Kos Kyle Sheehan

 Andrew Gotow Christian Benincasa Dan Muller

Rory O’Kane

April 2015

Advisor: Santiago Ontanon

2

Contents
1. Introduction

1.1. Purpose

1.1.1. Scope

1.1.2. Context Diagram

2. Architecture

2.1. Overview

2.2. Servers

2.2.1. Web Server

2.2.2. Authorization Server

2.2.3. Socko Server

2.2.4. Database

2.3. Network Message Interpretation/Processing

2.4. Game State

2.5. Systems

2.5.1. AI System

2.5.2. Network System

3. Detailed Design *

3.1. ECS Game Loop

3.1.1. World

3.1.2. Entity

3.1.3. System

3.1.4. EntityProcessingSystem

3.1.5. TimedSystem

3.1.6. IntervalSystem

3.1.7. Component

3.1.8. Game Loop

3.2. Components

3.2.1. Position

3.2.2. Actionable

3.2.3. Attack

3.2.4. Bounds

3.2.5. Character

3.2.6. Frame

3.2.7. Health

3.2.8. Inventory

3.2.9. Velocity

3.2.10. Time

3.2.11. Mana

3.2.12. Stats

3.2.13. Stat

3.2.14. Transport

3.2.15. NetworkingActor

3

3.2.16. Respawn

3.2.17. TileMap

3.2.18. ItemUse

3.2.19. Experience

3.2.20. Cooldown

3.2.21. Quest

3.2.22. QuestBag

3.2.23. Equipment

3.3. Items

3.3.1. Item

3.3.2. ItemType

3.3.3. Weapon

3.3.4. Weapon

3.4. Systems

3.4.1. MovementSystem

3.4.2. CollisionSystem

3.4.3. HealthSystem

3.4.4. RespawningSystem

3.4.5. FrameExpirationSystem

3.4.6. NetworkingSystem

3.4.7. NPCRespawningSystem

3.4.8. LevelingSystem

3.4.9. StatusEffectSystem

3.4.10. CooldownSystem

3.4.11. ItemSystem

3.4.12. AttackSystem

3.4.13. RoomChangingSystem

3.4.14. AISystem

3.5. Status Effects

3.5.1. Effect

3.5.2. TimeAttribute

3.5.3. OneOff

3.5.4. TimedInterval

3.5.5. Duration

3.5.6. Multiplier

3.6. Movement Processes

3.6.1. Action

3.6.2. MovementDirection

3.6.3. MovementDirection Case Classes

3.7. Collision Objects

3.7.1. QuadTree

3.7.2. Rectangle

3.8. Factories

3.8.1. ClassFactory

3.8.2. ItemFactory

4

3.8.3. QuestFactory

3.8.4. GraphFactory

3.8.5. EntityFactory

3.9. 3.9 Quest Generation *

3.9.1. 3.9.1 Overview

3.9.2. 3.9.2 Components

3.9.2.1. 3.9.2.1 GenerateQuest

3.9.2.2. 3.9.2.2 QuestHistory

3.9.3. 3.9.3 Systems

3.9.3.1. 3.9.3.1 QuestGenerationSystem

3.9.4. 3.9.4 Architecture

3.9.4.1. 3.9.4.1 Impact on existing architecture

3.9.4.2. 3.9.4.2 System Sequence Diagram

3.9.5. 3.9.5 Algorithms

3.9.5.1. 3.9.5.1 PaSSAGE

3.10. 3.10 Perception *

3.10.1. 3.10.1 Components

3.10.1.1. 3.10.1.1 Sense

3.10.1.2. 3.10.1.2 Vision

3.10.1.3. 3.10.1.3 Hearing

3.10.1.4. 3.10.1.4 Sound-Producing

3.10.1.5. 3.10.1.5 Memory

3.10.1.6. 3.10.1.6 Memory Contents

3.10.2. 3.10.2 Entities

3.10.2.1. 3.10.2.1 SoundEntity

3.10.3. 3.10.3 Systems

3.10.3.1. 3.10.3.1 Primary System: Perception System

3.10.3.2. 3.10.3.2 Seconary/Included System and Subsystems

3.10.3.2.1. 3.10.3.2.1 Vision System

3.10.3.2.2. 3.10.3.2.2 Hearing System

3.10.3.2.3. 3.10.3.2.3 Memory System

3.10.3.2.4. 3.10.3.2.4 Communication System

3.10.4. 3.10.4 Architecture

3.10.5. 3.10.5 Process and Design Patterns

3.10.5.1. 3.10.5.1 Sequence Diagram

3.10.5.2. 3.10.5.2 Entity Component System

3.10.5.3. 3.10.5.3 Observer Pattern

3.10.5.4. 3.10.5.4 Strategy Pattern

3.10.6. 3.10.6 Algorithms

3.10.6.1. 3.10.6.1 Bresenham’s line algorithm

3.10.6.2. 3.10.6.2 Wu’s line algorithm

3.11. 3.11 Pathfinding *

3.11.1. 3.11.1 Components

3.11.1.1. 3.11.1.1 Pathfinder

5

3.11.1.2. 3.11.1.2 AStar

3.11.1.3. 3.11.1.3 Dijkstra

3.11.1.4. 3.11.1.4 DistanceHueristic

3.11.1.5. 3.11.1.5 ManhattanDistance

3.11.1.6. 3.11.1.6 DiagonalDistance

3.11.2. 3.11.2 Systems

3.11.2.1. 3.11.2.1 PathfindingSystem

3.11.3. 3.11.3 Design

3.11.3.1. 3.11.3.1 Sequence Diagram

3.11.3.2. 3.11.3.2 Dependency Injection/Inversion of Control

3.11.3.3. 3.11.3.3 Strategy Pattern

3.11.4. 3.11.4 Algorithms/Data Structures

3.11.4.1. 3.11.4.1 A* search algorithm [1]

3.11.4.2. 3.11.4.2 Dijkstra’s algorithm [2]

3.11.4.3. 3.11.4.3 Manhattan Distance

3.11.4.4. 3.11.4.4 Diagonal (Chebyshev) Distance

3.11.4.5. 3.11.4.5 Binary Heap (java.util.TreeSet)

3.11.5. 3.11.5 Architecture

3.11.6. 3.11.6 References

3.12. 3.12 Map Generation *

3.12.1. 3.12.1 WorldGenerator

3.12.2. 3.12.2 MapGenerator3.9 Quest Generation *

4. Network System

4.1. NetworkMessageQueue

4.2. NetworkMessageInterpreter

4.3. NetworkMessageProcessor

4.4. SockoServer

4.5. AuthorizationProcessor

5. Ayai Web Application

5.1. Overview

5.2. Login Page

5.3. Character Creation

5.4. Character Selection

5.5. Changing Settings

6. Ayai World Editor

6.1. Searching

6.2. Creating and Editing a New Entry

7. Game Client

7.1. Overview

7.2. Graphics

7.2.1. Display

7.2.2. UIElement

7.2.3. UnitFrame

7.2.4. Chat

6

7.2.5. Inventory

7.2.6. QuestLog

7.2.7. Quest

7.2.8. PeopleList

7.2.9. Settings Menu

7.3. Game

7.3.1. Ayai

7.3.2. GameStateInterface

7.3.3. InputHandler

7.4. Net

7.4.1. Connection

7.4.2. MessageReceiver

8. Database Design

9. 9 Game Configuration File *

9.1. 9.1 Purpose

9.2. 9.2 Design

10. Glossary

1 Introduction

1.1 Purpose

This document specifies the entire software architecture and design for the Ayai

MMORPG game and framework. The design decisions directly relate to the

functionality, performance, constraints, attributes, and interfaces of the system.

Ayai is a massively multiplayer online game that allows developers to implement

research level AI and test its functionality with a potential base of approximately 20

players. Also provided is an open source framework that eases development of 2D

web-based MMORPGS. In order to achieve these goals, the framework focuses on

scalability, security, accessibility, and flexibility.

1.2 Scope

This document describes the software architecture and design for the initial release

of Ayai, as described in the Ayai Software Requirements Document. Additionally,

this document covers the second release of Ayai. The intended audience of this

document exclusively includes the designers, developer, testers, and open-source

developers who may use this framework.

1.3 Context Diagram

The context diagram shown in Figure 1 shows how the major components of the

Ayai system fit into context with other components.

7

Figure 1: Context Diagram

The web server serves the Ayai frontend as a static web page. The authorization

server handles authentication requests. Ayai’s backend uses WebSocket connections

to receive messages from the browser and return relevant game state and events.

2 Architecture

8

Figure 2: Architecture Diagram

2.1 Overview

The architecture behind Ayai is a collection of distinct, loosely coupled systems that

divide responsibilities into appropriate groups and categories. The Ayai architecture

also takes advantage of the actor model of concurrency in order to process the

heaviest tasks in a distributed and concurrent manner. Notable portions of the

system include the web server which provides a copy of the frontend for each

player, the collection of servers that handle various authorization and database

operations, and the distributed systems of supervisors and actors that interpret and

process commands from the user, process changes to the game state, and returns

updated data back to the user.

2.2 Servers

2.2.1 Web Server

The frontend of the Ayai project is a website comprising of static HTML5 content. The

web server nginx has the task of receiving all HTTP/HTTPS/WebSocket connections

from the user. Nginx was chosen due to its static page serving performance and

capabilities and reverse proxy features. When the user first browses to the Ayai

website, nginx returns a static copy of the website. However, if the user has an

authentication request or is sending a game command, nginx proxys the request to

the appropriate server

2.2.2 Authorization Server

A simple authorization server provides authentication for the Ayai system. As

WebSockets do not natively support authentication, HTTPS is used in tandem with

WebSockets in order to provide user security and authorization. Users send their

credentials over HTTPS using the Basic Access Authentication mechanism and, if

validated, receives a temporary token to validate their WebSocket connection.

2.2.3 Socko Server

The WebSocket server (created using the Socko library) accepts WebSocket

connections forwarded by nginx and expects them to be in the form of a game

related command (move, attack, etc.). The Socko server then forwards these

network messages to a NetworkMessageInterpreterSupervisor, in preparation to be

interpreted and then queued for processing.

2.2.4 Database

Ayai employs a light weight flat-file Java Database engine called H2. The Database

stores user credentials and various portions of dynamic game state, such as maps,

9

inventories, character skills, locations, and experience. Various systems of the game

store dynamic portions of the game state to the database at an infrequent rate

(approximately once per 10 seconds). The entity factories retrieve this information

when a character logs in.

2.3 Network Message Interpretation/Processing

The Network System Section (section 4) describes the mechanics of the Network

Message system in further detail. The Socko server receives network messages that

need to be interpreted for meaning and content before being processed. The

NetworkMessageInterpreterSupervisor has a thread pool of

NetworkMessageInterpreters, each of which understands a message received and

places a game command into the NetworkMessageQueue. At each game tick, the

NetworkMessageQueue is cleared and given to the

NetworkMessageProcessorSupervisor for processing.

2.4 Game State

The game state in Ayai is represented as an Entity Component System, which stores,

manages, and processes game state. Worlds separate players by in-game locality

and stores data as entities with components.

2.5 Systems

Systems are then in charge of processing changes and game logic, applying these

changes to the relevant components. Systems are placed on tiers, so that higher

tiers must complete before a lower tier starts to process.

2.5.1 AI System

The AI System processes new information about the world and makes appropriate

decisions related to the artificial intelligence of entities and the game itself. This

includes low level decision making, such as movement and attacking for specific non

player characters, to high level decision making, such as the creation of quests,

enemies, and other necessary game entities.

2.5.2 NetworkSystem

At the lowest tier exists the NetworkSystem, which serializes the game state,

calculates messages to return back to players, and sends messages back over the

WebSocket connection to the frontend.

10

3 Detailed Design

3.1 ECS Game Loop

This section defines the ECS system and the main backend driver (called a Game

Loop). These properties go into detail about the workings of the main loop of the

system. The ECS system is a small system that consists of three main properties

which are the Systems, Entities, and Components.

Figure 3: engine diagram

11

3.1.1 World

Figure 4: World Class Diagram

A World holds all entities, systems and processes and filters entity information

Attributes

Name Type Description

entities ArrayBuffer[Entity] Holds all known entities in a list

system ArrayBuffer[System] Holds all systems added to the
world

Deleted ArrayBuffer[Entity] Holds all entities that are primed
for deletion, but cannot be
removed until after system process

Added ArrayBuffer[Entity] Holds all entities that are primed
for addition to entities, but cannot

12

be added to main list until system
process is finished

Operations

Operation: getEntityByTag(tag : String) : Option[String]

Input : Tag - the unique tag of the entity

Output : Returns an option for an entity

Description : Finds an entity with a given tag and returns option on it.

Operation: getEntityByComponents(componentTypes : T*) : List[Entity]

Input : ComponentTypes : T - a list of types of component classes

Output : Returns a list of entities

Description : Takes a list of component types and returns a list of entities which have

all the given components

Operation: getEntitiesWithExclusions(include : List(T), exclude : List(T)) :

List[Entity]

Input : Include : List(T) - a list of types of component classes you want to find exclude

: List(T) - a list of types you want to exclude from the find

Output : Returns a list of entities

Description : Takes a list of component types you want to search for in entities and a

list of component types you do not want an Entity to have and returns a list of

entities which match.

Operation: getGroup(group : String) : ArrayBuffer[String]

Input : Group : String - a group name

Output : List of Entities

Description : Returns list of entities that are matched to group

Operation: registerEntityToGroup(entity : Entity, group : String) :

ArrayBuffer[Entity]

Input : entity : Entity - an entity to add

group : String - group to add to Output :

The group you are adding to

Description : Adds an entity to a group and returns that group

Operation: addEntity(e : Entity, second : Boolean)

Input : e : Entity - entity to add to world second : Boolean

- did this get called from entity itself

Output : None

Description : Add entity to world

13

Operation: createEntity(tag : String) : Entity

Input : tag : String - tag which to identify item

Output : Entity which is created

Description : Create and return a new entity, not added to world

Operation: addSystem(system : System)

Input : system : System - The system to add to world and processing cycle

Output : None

Description : Adds systems to the world systems list and is included in next process

cycle

Operation: process()

Input : None

Output : None

Description : Runs process() on all systems that are included in the world

3.1.2 Entity

Figure 5: Entity Class Diagram

An Entity holds all data (Components) needed to be processed by a system for a

specific function (characters, items, enemies).

Attributes

Name Type Description

Tag String Unique tag to look for entity

World World World which Entity belongs to

Alive Boolean Is an entity alive or dead

Components ArrayBuffer[Component] List of components

14

uuid String Unique id for character

Operations

Operation: getComponent(componentType : T) : Option[Component]

Input : ComponentType : T - classOf component to find

Output : Returns an option for the component

Description : Searches for a component in the list, and returns an option on it

Operation: removeComponent(componentType : T)

Input : ComponentTypes : T - classOf Component to find

Output : None

Description : Takes a component type and removes it from list of components

Operation: kill() Input

: None

Output : None

Description : Removes entity from the world it is a part of.

3.1.3 System

Figure 6: System Class Diagram

Systems are the framework’s way of processing and manipulating data. Overriding

the process function allows for the system to do work on the list of entities it uses.

Attributes

Name Type Description

world World The world it is a member of

15

Operations

Operation: process(delta : Int)

Input : delta : Int - The time difference from the last frame

Output : None

Description : Abstract defined function needing to be overwritten

3.1.4 EntityProcessingSystem

Figure 7: System Class Diagram

An EntityProcessingSystem inherits from System and allows for users to manipulate
one Entity at a time. Also includes list inputs to exclude and include certain
components.

Attributes

Name Type Description

Include List[Component] List of components which are

used for filtering in the

needed components

Exclude List[Component] List of components which are

used for filtering out

unneeded components

Operations

Operation: process(delta : Int)

Input : delta : Int - The time difference from the last frame

Output : None

Description : Calls processEntity and filters the list of entities

16

Operation: processEntity(entity : Entity, delta : Int)

Input : delta : Int - The time difference from the last frame entity : Entity - the

filtered entity needed for processing

Output : None

Description : Calls entities one by one and processes the information based on

implementation

3.1.5 TimedSystem

Figure 8: Timed System Class Diagram

A TimedSystem only runs after the amount of time given to it. Used for processing

that needs to be done on a timed interval.

Attributes

Name Type Description

milliSeconds Int Amount of time that must
pass before system processes
again

start Int The time when the system

started counting for next run

Operations

Operation: process(delta : Int)

Input : delta : Int - The time difference from the last frame

Output : None

Description : Calls processTime and checks to see if enough time has passed

17

Operation: processTime(delta : Int)

Input : delta : Int - The time difference from the last frame entity : Entity -

the filtered entity needed for processing Output : None

Description : Is called after certain amount of time given by milliseconds.

3.1.6 IntervalSystem

Figure 9: System Class Diagram

A IntervalSystem only runs after a certain amount of frames has passed. Used for

processing that needs to be done on a frame interval.

Attributes

Name Type Description

count Int The amount of frames that

must pass before the system

processes again

counter Int The current amount of frames
that have been
passed since the last run

Operations

Operation: process(delta : Int)

Input : delta : Int - The time difference from the last frame

Output : None

Description: Calls processInterval and checks to see if enough frames have passed

Operation: processInterval(delta : Int) Input : delta : Int - The time

difference from the last frame entity : Entity - the filtered entity needed

for processing Output : None

Description : Is called after certain amount of frames have been passed.

18

3.1.7 Component

Figure 10: Component Class Diagram

Component is an empty class, but is used as an identifier for grouping data together.

3.1.8 Game Loop

Figure 11: The Game Loop

GameLoop.scala is the main driver of the Ayai framework. It loads in all Constants,

maps, and compiles the rooms together, and sets all worlds with the appropriate

systems and information.

Attributes

Name Type Description

19

roomHash HashMap[Long, Entity] A map of the roomId to the

RoomEntity and its Map

information components

log Logger A logger which allows for

printing to a log file

running Boolean Is the main loop still running

Operations

Operation: main

Input : None

Output : None

Description : Sets up the worlds needed to run the game, sets up all network

connections, and loads all rooms from files.

3.2 Components

Components are aspects of entities. An entity is comprised of one or more

components which specify behaviors that the entity might have. For example a

player entity would be comprised of a position, bounds, health, inventory, mana,

and character component.

20

Figure 12: All components inheriting from component

3.2.1 Position

Figure 13: Position Class Diagram

21

Name Type Description

x Int The position on the x-

coordinate plane of

the entity

y Int The position on y-

coordinateplane

entity

3.2.2 Actionable

Figure 14: Actionable Class Diagram

Name Type Description

active Boolean Is the component in an active

state

action Action The action that the

component is doing

3.2.3 Attack

Figure 15: Attack Class Diagram

Name Type Description

initiator Int Who initiated the attack

victims ArrayBuffer[Entity] List of entities of who the

attack has collided with

22

3.2.4 Bounds

Figure 16: Bounds Class Diagram

Name Type Description

width Int The total width of the

bounding box

height Int The total height of the

bounding box

Name Type Description

3.2.5 Character

Figure 17: Character Class Diagram

Name Type Description

id String The unique string of the

character

name String The name of the character

3.2.6 Frame

Figure 18: Frame Class Diagram

23

Name Type Description

framesActive Int The amount of frames that

must be passed to run again

frameCounts Int The current amount of

frames that have passed

3.2.7 Health

Figure 19: Health Class Diagram

Name Type Description

currentHealth Int The current value of health

maximumHealth Int The maximum amount of

health value

currentModifiers ArrayBuffer[Effect] The current effects that are
effecting the currentHealth
value

maxModifiers ArrayBuffer[Effect] The current effects that are

effecting the maximumHealth

value

currentCached Int The value of currentHealth

with all effects calculated

maxCached Int The value of maximumHealth

with all effects calculated

24

isAlive Boolean Is current health less than

zero

Operation: addDamage(damage: Float)

Input : damage: Float -the amount of damage to subtract from the currentHealth

Output : None

Description : Calculate damage to subtract from currentHealth

Operation: refill()

Input : None

Output : None

Description : Sets the currentHealth to maximumHealth

Operation: updateCachedValue()

Input : None

Output : None

Description: Updates the cached values of both maximum Health and currentHealth

Operation: updateMaxValue()

Input : None

Output : None

Description : Updates the cached values of maximumHealth by processing the

effects on the component

Operation: updateCurrentValue()

Input : None

Output : None

Description : Updates the cached values of currentHealth by processing the effects

on the component

Operation: getCurrentValue()

Input : None

Output : Returns the cached value for currentHealth

Description : Returns the cached value for currentHealth

Operation: getMaxValue()

Input : None

Output : Returns the cached value for maximumHealth

Description : Returns the cached value for maximumHealth

25

3.2.8 Inventory

Figure 20: Inventory Class Diagram

Name Type Description

inventory ArrayBuffer[Item] A list of items

Operation: addItem(itemToAdd: Item)

Input : Item to add to inventory list Output :

None

Description : Adds Item to inventory

Operation: removeItem(itemToRemove: Item)

Input : Item to remove from inventory list Output :

None

Description : Removes Item from inventory

Operation: hasItem(itemToCheck: Item): Boolean

Input : Item to check in inventory list

Output : Returns if item exists in list

Description : Checks to see if given item exists in list

Operation: getItem(itemLocation: Int): Item

Input : The slot that the item exists in Output :

Returns the item

Description : Retrieves item from list

Operation: totalWeight(): Int

Input : None

Output : Returns total weight of inventory

Description : Returns the weight of all items in inventory

26

3.2.9 Velocity

Figure 21: Velocity Class Diagram

Name Type Description

xSpeed Int Speed in the xDirection

ySpeed Int Speed of the y direction

modifiers ArrayBuffer[Effect] The current effects that are

effecting both speed values

Operation: addEffect(effect: Effect)

Input : effect: Effect - the effect to add Output :

None

Description : Adds effect to modifiers

Operation: updateCachedValue()

Input : None

Output : None

Description : Updates the cached value

3.2.10 Time

Figure 22: Time Class Diagram

27

Name Type Description

msActive Int The amount of msSeconds

until the component is

activated

startTime Long The time of last frame ending

3.2.11 Mana

Figure 23: Mana Class Diagram

Name Type Description

currentMana Int The current value of health

maximumMana Int The maximum amount of

health value

currentModifiers ArrayBuffer[Effect] The current effects that are

effecting the currentMana

value

maxModifiers ArrayBuffer[Effect] The current effects that are

effecting the maximumMana

value

currentCached Int The value of currentMana

with all effects calculated

maxCached Int The value of maximumMana

with all effects calculated

28

isAlive Boolean Is current health less than

zero

Operation: addDamage(damage: Float)

Input : damage: Float - the amount of damage to subtract from the currentMana

Output : None

Description : Calculate damage to subtract from currentMana

Operation: updateCachedValue()

Input : None

Output : None

Description : Updates the cached values of both maximumMana and current-

Mana

Operation: updateMaxValue()

Input : None

Output : None

Description : Updates the cached values of maximumMana by processing the effects

on the component

Operation: updateCurrentValue()

Input : None

Output : None

Description : Updates the cached values of currentMana by processing the effects

on the component

Operation: getCurrentValue()

Input : None

Output : Returns the cached value for currentMana

Description : Returns the cached value for currentMana

Operation: getMaxValue()

Input : None

Output : Returns the cached value for maximumMana

Description : Returns the cached value for maximumMana

Operation: addEffect(effect: Effect)

Input : effect: Effect - the effect to add

Output : None

Description : Adds effect to modifiers (modifier depends on type in effectType)

29

3.2.12 Stats

Figure 24: Stats Class Diagram

Name Type Description

stats ArrayBuffer[Stat] List of stats

Operation: updateCachedValue()

Input : None

Output : None

Description : Updates the cached values of all stored stats

Operation: getValueByAttribute(attributeType: String): Int

Input : Based on attribute type return the value

Output : Returns the current cached value of the given attribute

Description : Returns the current cached value of the given attribute

3.2.13 Stat

Figure 25: Stat Class Diagram.

30

Name Type Description

attributeType String The string of an attribute

magnitude Int Current value of attribute

cachedValue Int Current cached value of

attribute

modifiers ArrayBuffer[Effect] The current effects that are

effecting the stat

Operation: updateCachedValue()

Input : None

Output : None

Description : Updates the cached value of the stat by processing the effects on the

component

Operation: addEffect(effect: Effect)

Input : effect: Effect - the effect to add

Output : None

Description : Adds effect to modifiers (modifier depends on type in effectType)

3.2.14 Transport

Figure 26: Transport Class Diagram

Name Type Description

toRoom Room Specifies the room to which to

transport

startPosition Position Specifies the position in

toRoom

31

3.2.15 NetworkingActor

Figure 27: Networking Actor Class Diagram

Name Type Description

actor ActorSelection The connection to the

receiving player

3.2.16 Respawn

Figure 28: Respawn Class Diagram

Name Type Description

time Int Defaulted to 1500 ms, and is

the amount of time until

player can respawn

delta Long The time that a player died

32

3.2.17 TileMap

Figure 29: TileMap Class Diagram

Name Type Description

array Array[Array[Tile]] Dimensional Array of tiles

listOfTransport List[TransportInfo] A list of transport locations on

a map

tileSets TileSets A list of tileset files

file String the JSON file that represents

the map

width Int the width of tiles of map

height Int the height of tiles of map

tileSize Int number of pixels of an

individual tile

Operations

Operation: getMaximumHeight() : Int

Input : None

Output : Number of pixels in height

Description : Returns the height multiplied by the tileSize to get the number of pixels

in the y-axis

Operation: getMaximumWidth() : Int

Input : None

Output : Number of pixels in width

33

Description : Returns the width multiplied by the tileSize to get the number of pixels

in the x-axis

Operation: getTileByPosition(position : Position) : Tile

Input : position : Position - the position to convert to tile

Output : The tile referenced by position

Description : Returns the tile that is in the area of the given position

Operation: valueToTile(value : Int) : Int

Input : a pixel location

Output : the value divided by tileSize

Description : Returns the value given divided by tileSize

Operation: isPositionInBounds(position : Position) : Position

Input : position : Position - the position to check

Output : returns new position, if old value was not valid

Description : Given a position, checks to see if tile location is not valid, and returns a

valid position

Operation: onTileCollision(position : Position) : Boolean

Input : position : Position - the position to check

Output : returns true/false if position is on unwalkable tile

Description : Given a position, checks to see if tile location is valid

Operation: checkIfTransport(characterPosition : Position) : Transport

Input : characterPosition : Position - the position to check

Output : Returns a transport object if tile is a transport tile

Description : Given a position, checks to see if tile location is a transportable tile and

returns the information

3.2.18 ItemUse

Figure 30: ItemUse Class Diagram

The ItemUse component is acted upon by the ItemSystem and is used to convey

information about when items are used by a player.

34

Name Type Description

initiator Entity What entity used the item

item Item the item that was used

target Entity What entity was targeted by

the initiator

Operations

Operation: getItemEffects() : ArrayBuffer[Effect

Input : None

Output : The list of effects on an item

Description : Returns the list of effects that an item has on them (would be

processed by the ItemSystem)

3.2.19 Experience

Figure 31: Experience Class Diagram

Experience is gained from when players complete tasks or kill enemies. When a

player gains enough experience then they can level up and adds more power to their

stats.

35

Name Type Description

baseExperience Long The total amount of

experience

level Int Current level of entity

modifiers ArrayBuffer[Effect] The current effects that are

effecting baseExperience

Operation: updateCachedValue()

Input : None

Output : None

Description : Updates the cached value of experience

Operation: getValue(): Int

Input : None

Output : Returns the cached value for experience

Description : Returns the cached value for experience

Operation: levelUp(experienceThreshold: Long): Boolean

Input : The threshold for the next level

Output : Returns if the player has leveledUp

Description : Checks to see if the players baseExperience is higher than the

experience threshold of the next level

Operation: addEffect(effect: Effect)

Input : effect: Effect - the effect to add

Output : None

Description : Adds effect to modifiers (modifier depends on type in effectType)

3.2.20 Cooldown

Figure 32: Cooldown Class Diagram

Keeps a time to see if a player can perform another action. If the cooldown is active

then a player cannot do an action such as attack or use an item. Is acted up by the

cooldown system.

36

Name Type Description

startTime Long The start time when the

cooldown was set

length Long Length in seconds for how

long cooldown will last

Operation: isReady(): Boolean

Input : None

Output : Returns if enough time has passed

Description : Returns to see if enough time has passed and cooldown is down

3.2.21 Quest

Figure 33: Experience Class Diagram

Information about quests and objectives to complete in the game (is not a

component, but is used with quest bag)

Name Type Description

id Int The quest id

title String Title of the quest

description String The description and details of

the quest

recommendLevel Int The recommended level that a

player should be to do the

quest

objectives List[KillObjective] The objectives to complete

the quest

37

Operation: isReady(): Boolean

Input : None

Output : Returns if enough time has passed

Description : Returns to see if enough time has passed and cooldown is down

3.2.22 QuestBag

Figure 34: QuestBag Class Diagram

Is a component that holds information about a players held quests

Name Type Description

quests ArrayBuffer[Quest] An entities held quests

Operation: addQuest(questToAdd: Quest)

Input : The quest to add to quests list Output :

None

Description : Adds quest to quests list

3.2.23 Equipment

Figure 35: Equipment Class Diagram

The player’s equipment is what allows them to greatly increase their stats by

providing the ability to equip weapons and armor.

38

Name Type Description

equipmentMap HashMap[String, Item] Maps an item slot to an item

Operation: equipItem(item: Item): Boolean

Input : The item to equip

Output : Returns if the equip was successful

Description : Tries to equip an item based on the items information, will return false

if failed

Operation: equipItem(item: Item, slot: String): Boolean

Input : The item to equip and the slot to equip to

Output : Returns if the equip was successful

Description : Tries to equip an item based on the slot given, will return false if

failed

Operation: equipItem(equipmentType: String): Item

Input : The slot to unequip from

Output : Returns the item that was unequiped

Description : Tries to unequip an item based on the slot given, will return the item

that was in the slot

39

3.3 Items

Items are used throughout the game as potentially quest items, weapons, armor, or

consumables (potions, mana potions, and stat increases or decreases)

Figure 36: Items

3.3.1 Item

Figure 37: Item Class Diagram

40

Attributes

Item is a class that holds all information about an item including its effects and

descriptions. When an item is used it can either be equipped by a player (based on

item type) or be used by a player to perform an action.

Name Type Description

id Long the item id

name String The name of the item

value Int The value that the item will

use when consumed or

equipped

weight Double The weight of the item

itemType ItemType Additional information about

an item such as weapon or

armor.

effects ArrayBuffer[Effect] The effects that an item will

do when used or equipped

3.3.2 ItemType

Figure 38: ItemType Class Diagram

ItemType is an abstract class that can be extended to hold additional information for

items. Also contains asJson function export information from needed class.

41

3.3.3 Weapon

Figure 39: Weapon Class Diagram

Attributes

A weapon can be equipped in the weapon1 or weapon2 equipment slots. Raises a

players offensive stats.

Name Type Description

range Int the number of pixels the

attack can be extended

damage Int The amount of damage the

attack will do

damageType String The type of damage the
weapon will inflict (only
physical)

itemType String The slot that it will be

equipped onto (weapon1 or

weapon2)

3.3.4 Weapon

Figure 40: Armor Class Diagram

42

Attributes

An armor can be equipped in the head, torso, legs, or feet equipment slots. Raises a

players defensive stats.

slot String The slot that will be equipped

to

damage Int The amount of protection that
will raise the defense
stat

itemType String The slot that it will be

equipped to

3.4 Systems

Systems, as described in Section 3.1.3, are used to manipulate component data.

43

Figure 41: Systems

44

3.4.1 MovementSystem

Figure 42: MovementSystem Class Diagram

Attributes

The movement system inherits the EntityProcessingSystem and requires an Entity to

have the Position, Velocity, Actionable, and Character components.

Name Type Description

roomHash HashMap[Long, Entity] A map of the roomId to the

RoomEntity and its Map

information components

log Logger A logger which allows for

printing to a log file

Operations

Operation: processEntity(e : Entity, delta : Int)

Input : e : Entity - entity which possesses the necessary components delta :

Int - time difference from last frame

Output : None

Description : Checks to see if the player is moving, then retrieves the room the

player is in, and then checks to see if the position the player is in is valid and then

attaches transport component to entity.

45

3.4.2 CollisionSystem

Figure 43: Collision System Class Diagram

Attributes

The collision system inherits from the normal System class and goes through each

ROOM to gather its entities and uses QuadTrees to find entities which it may

interact with. After finding eligible items it does collision detection and does the

required actions (whether if an attack is colliding, or two players touching).

Name Type Description

log Logger A logger which allows for

printing to a log file

Operations

Operation: process(delta : Int)

Input : delta : Int - time difference from last frame

Output : None

Description : Puts all room entities in quadtree, then retrieves each section of

quadtree and runs collision detection.

Operation: handleCollision(entityA : Entity, entityB: Entity) Input :

entityA : Entity - first entity for collision checking

entityB : Entity - second entity for collision checking

Output : None

Description : Checks to see if the two entities overlap

46

Operation: handleCollision(attacker : Attack, attackee : Health)

Input : attacker : Attack - attack component which calculates damage done to

attackees health

attackee : Health - health of victim, which damage is reduced from

Output : None

Description : Handles damage calculation of colliding attack and character entities

Operation: valueInRange(value : Int, min : Int, max :Int) : Boolean
Input : value : Int - value to see if between min and max min : Int - Bounds
in which value must be greater than max :Int - Bounds in which value
must be less
Output : Detects if given components are in range of each other

Description : Checks to see if value given is between the min and max

Operation: excludeList(entities: List[Entity],exclusionList: List[T]):List[Entity]

Input : entities : List[Entity] - list of entities exclusionList : List[T] - list of components to

exclude

Output : Returns the list of entities that do not contain components from

exclusionList

Description : Filters out exclusionList from list of entities

Operation: hasExclusion(entity : Entity, exclusionList : List[T]) : Boolean

Input : entity : Entity - entity to check

exclusionList : List[T] - list of components to exclude

Output : Returns if the entity contains any of the excluded components Description :

Checks entity components to see if it contains any components from exclusion list

3.4.3 HealthSystem

Figure 44: HealthSystem Class Diagram

47

Health System inherits from EntityProcessingSystem and checks Entity health to see

if it should be killed and removed from game.

Operations

Operation: processEntity(entity : Entity, delta : Int)

Input : entity : Entity - entity to process delta : Int - time difference from last frame

Output : None

Description : Processes entity health

3.4.4 RespawningSystem

Figure 45: Respawning System Class Diagram

RespawningSystem inherits from EntityProcessingSystem and checks Entities who

are dead and respawns the characters.

Operations

Operation: processEntity(entity : Entity, delta : Int)

Input : entity : Entity - entity to process delta : Int - time difference from last frame

Output : None

Description : Processes entity respawn

3.4.5 FrameExpirationSystem

48

Figure 46: FrameExpirationSystem Class Diagram

FrameExpirationSystem inherits from EntityProcessingSystem and checks Entities

that contain a Frame component and check to see if action is needed.

Operations

Operation: processEntity(entity : Entity, delta : Int)

Input : entity : Entity - entity to process delta : Int - time difference from last frame

Output : None

Description : Processes entity and checks frame component

3.4.6 NetworkingSystem

Figure 47: NetworkingSystem Class Diagram

Attributes

The networking system inherits the TimedSystem and after a certain amount of time

updates all game players.

Name Type Description

roomHash HashMap[Long, Entity] A map of the roomId to the

RoomEntity and its Map

information components

log Logger A logger which allows for

printing to a log file

timeout Int Time that a message has to

compile

49

Operations

Operation: processTime(delta : Int)

Input : delta : Int - time difference from last frame

Output : None

Description : Processes compiling of messages and sending of messages to players

3.4.7 NPCRespawningSystem

Figure 48: NPCRespawningSystem Class Diagram

Attributes

The NPCRespawningSystem is responsible for restoring any NPCs that need to be

respawned and which are designated as being able to respawn.

Name Type Description

actorSystem ActorSystem Holds actors in game that

allows system to query for

information

Operations

Operation: processEntity(delta : Int)

Input : delta : Int - time difference from last frame

Output : None

Description : Processes compiling of messages and sending of messages to players

50

3.4.8 LevelingSystem

Figure 49: LevelingSystem Class Diagram

Attributes

The LevelingSystem is meant to calculate a players experience and determine if

levelup is needed.

Name Type Description

actorSystem ActorSystem Holds actors in game that

allows system to query for

information

Operations

Operation: processEntity(delta : Int)

Input : delta : Int - time difference from last frame

Output : None

Description : Processes compiling of messages and sending of messages to players

3.4.9 StatusEffectSystem

Figure 50: StatusEffectSystem Class Diagram

51

Attributes

The StatusEffectSystem is meant to calculate all status effects on a character per

cycle and determine if the effects should be removed and calculate all values

needed throughout the cycle.

Name Type Description

actorSystem ActorSystem Holds actors in game that

allows system to query for

information

Operations

Operation: processEntity(delta : Int)

Input : delta : Int - time difference from last frame

Output : None

Description : Processes compiling of messages and sending of messages to players

3.4.10 CooldownSystem

Figure 51: CooldownSystem Class Diagram

. Attributes

The cooldown system works with the cooldown component to stop players from

attacking or using items too quickly

Name Type Description

52

actorSystem ActorSystem Holds actors in game that

allows system to query for

information

Operations

Operation: processEntity(delta : Int)

Input : delta : Int - time difference from last frame

Output : None

Description : Processes compiling of messages and sending of messages to players

3.4.11 ItemSystem

Figure 52: ItemSystem Class Diagram

Attributes

The ItemSystem checks to see if any items need to be processed on characters.

Name Type Description

actorSystem ActorSystem Holds actors in game that

allows system to query for

information

Operations

Operation: processEntity(delta : Int)

Input : delta : Int - time difference from last frame

Output : None

Description : Processes compiling of messages and sending of messages to players

53

3.4.12 AttackSystem

Figure 53: AttackSystem Class Diagram

Attributes

The AttackSystem processes attack messages from the processors

Name Type Description

actorSystem ActorSystem Holds actors in game that

allows system to query for

information

Operations

Operation: processEntity(delta : Int)

Input : delta : Int - time difference from last frame

Output : None

Description : Processes compiling of messages and sending of messages to players

Operation: getWeaponStat(entityGet: Entity)

Input : entity to get stat off of

Output : Outputs the total attack damage

Description : Processes all attack stats that a player has on them and compiles them

together

54

Operation: getArmorStat(entityGet: Entity)

Input : entity to get stats off of

Output : Outputs the total defensive value

Description : Processes all defensive stats that a player has on them and compiles

them together

Operation: getDamage(initiator: Entity, victim: Entity)

Input : initiator - entity who initiated attack victim - person

who was attacked Output : None

Description : Processes both defensive and attack stats that a victim and initiator

have and compiles damage to receive on victim.

3.4.13 RoomChangingSystem

Figure 54: RoomChangingSystem Class Diagram

Attributes

The RoomChangingSystem inherits the EntityProcessingSystem and checks to see

that if an Entity contains a "Transport" component and changes the processing

entities room.

Name Type Description

roomHash HashMap[Long, Entity] A map of the roomId to the

RoomEntity and its Map

information components

log Logger A logger which allows for

printing to a log file

Operations

Operation: processEntity(entity : Entity, delta : Int)

Input : entity : Int - entity to process, delta : Int - time difference from last frame

55

Output : None

Description : Processes and sends all player messages

3.4.14 AISystem

Figure 55: AISystem Class Diagram

The AI system inherits from the normal System and calculates all artificial

intelligence based decisions.

Operations

Operation: process(delta : Int)

Input : delta : Int - time difference from last frame

Output : None

Description : Calculates AI commands

Operation: getScore(current : Position, goal : Position)

Input : current : Position - current position of AI agent

Input : goal : Position - current position of target

Output : score : Int

Description : Calculates score based on distance from target

findClosest(entity: Entity, possibles: List[Entity])

Input : entity : Entity - Starting entity

Input : possibles : List[Entity]

Output : entity : Entity

Description : Returns closed entity to starting entity

findDirection(entity: Entity, target: Entity)

Input : entity : Entity - Starting entity

56

Input : target : Entity - Target entity

Output : MoveDirection

Description : Returns MoveDirection for entity to move towards target

3.5 Status Effects

Figure 56: Ayai Status Effect

57

The status effect system comprises of an Effect class that takes in a Multiplier,

EffectType string, and a Time Attribute. It can be used with 5 main components

(Health, Mana, Stats, Experience, and Velocity).

3.5.1 Effect

Figure 57: Effect Class Diagram

Attributes

The Effect class holds all information about an effect. Effects are used to change

statistics for a temporary time by being attached to a weapon or used on an item.

Name Type Description

name String Name of the effect

description String Description of the effect

effectType EffectType Information about the effect

value Int Value that effect will use

attribute TimeAttribute Details of how often effect will

run

isRelative Boolean Is the effect adding to the

current value of the effected

type (if false, the value will

change to an absolute value)

58

isValueRelative Boolean is computed value determined

by the current value of the

type

effectiveValue Int The compiled value of the

effect to use

Operations

Operation: process(effectValue: Int = 0)

Input : effectValue: Int - is defaulted to zero, but if the process is determined by an

outside value (such as current health) then that value needs to be given

Output : Returns the computed value

Description : Processes and updates the effective value for the cycle or effect

Operation: updateValue(value: Int)

Input : value: Int - the outside value used to process

Output : None

Description : Updates effective value

Operation: isValid()

Input : None

Output : If effect is still valid

Description : Checks to see if effect is still valid by testing time attribute

3.5.2 TimeAttribute

Figure 58: TimeAttribute Class Diagram

The TimeAttribute class is an abstract class that is used to determine how long and

how much an effect needs to run.

59

Operations

Operation: process()

Input : None

Output : Returns if the value has been changed

Description : Processes the updated values of the time

Operation: isReady()

Input : None

Output : Returns if effect is ready to run

Description : Returns if the effect is ready to run

Operation: initialize()

Input : None

Output : None

Description : Sets all values to initial settings

Operation: isValid()

Input : None

Output : Boolean

Description : Returns if the effect should be removed from the game or character

3.5.3 OneOff

Figure 59: OneOff Class Diagram

Attributes

The OneOff class is extended from the TimeAttribute and is meant to run the effect

immediately and only once. Once it has been run isValid and isReady will be true and

false, respectively.

Name Type Description

timesUsed Int How many times has the

effect been run

60

3.5.4 TimedInterval

Figure 60: TimedInterval Class Diagram

Attributes

The TimedInterval class is extended from the TimeAttribute and is meant to be run

at a set interval for a set amount of time.

Name Type Description

timesProcessed Int How many times has the

effect been run

startTime Long When was the effect

initialized

currentTime Long What is the currentTime

endTime Long When will the effect end

interval Int How many seconds should the

effect be processed (in

seconds)

maxTime Long How long should effect last for

(in seconds)

61

3.5.5 Duration

Figure 61: Duration Class Diagram

Attributes

The Duration class is extended from the TimeAttribute and is meant to be run for

the length given. The effect is processed is meant to be run once, but is removed

once the time is up (meant for temporary stat increases)

Name Type Description

timesProcessed Int How many times has the

effect been run

startTime Long When was the effect

initialized

currentTime Long What is the currentTime

endTime Long When will the effect end

maxTime Long How long should effect last for

(in seconds)

62

3.5.6 Multiplier

Figure 62: Multiplier Class Diagram

Attributes

The Multiplier class has an internal value which it will use to multiply with the

effects value to create the effects effective value. For example, if the multiplier

value is .5 and the effect wants to use current health’s value, it will decrease the

value to half of what it was.

Name Type Description

value Float The multiplier value to use

with the effect value

Operations

Operation: process(effectValue: Int = 0)

Input : effectValue: Int - the value to multiply

Output : Returns the multiplied value

Description : Multiplies the given value by the multiplier value

63

3.6 Movement Processes

Figure 63: Action System Diagram

Movement in the Ayai framework are based on an Action trait. These actions are

used for players and are currently only used to process Movements. Movements

consist of an X and Y direction and the process function moves the entity in the

needed direction.

3.6.1 Action

Figure 64: Action Class Diagram

The action is a trait that has a process function and an asJson function. The process

function is used to process the given entity and asJson is to print out the state of the

action.

64

3.6.2 MovementDirection

Figure 65: MoveDirection Class Diagram

The movement direction consists of an X and Y direction and the process function of

MovementDirection takes the X and Y direction and multiples the user’s velocity

component to move in the correct direction.

3.6.3 MovementDirection Case Classes

Figure 66: Case Classes MoveDirections Class Diagram

There are 8 states that the movement direction is allowed to be in. These case

classes have predefined X and Y directions and override the asJson method to print

out the correct state to the user.

These are 8 case classes are defined as:

• LeftDirection has an X direction of -1 and Y direction of 0

• RightDirection has an X direction of 1 and Y direction of 0

• UpDirection has an X direction of 0 and Y direction of 1

• DownDirection has an X direction of 0 and Y direction of -1

• UpLeftDirection has an X direction of -1 and Y direction of 1

• UpRightDirection has an X direction of 1 and Y direction of 1

• DownLeftDirection has an X direction of -1 and Y direction of -1

• DownRightDirection has an X direction of 1 and Y direction of -1

65

3.7 Collision Objects

3.7.1 QuadTree

Figure 67: QuadTree Class Diagram

Quadtrees are tree data structure that is used to find the entities that are most likely

to collide with each other. The QuadTree splits itself into four tree nodes which

themselves have four nodes. Once a certain amount of items have been put into a

node, it further splits itself up and divides those entities up. It allows for users to

detect entities without checking against each one and run a collision detection

algorithm on a smaller set of entities.

Name Type Description

level Int Depth of tree node

bounds Rectangle What bounds does this node

take care of

66

MAXOBJECTS Int The max number of objects in

a quadtrees

MAXLEVELS Int The maxdepth of the quadtree

objects ArrayBuffer[Entity] The list of objects the list hold

nodes ArrayBuffer[QuadTree] The nodes of a quadtree

Operations

Operation: clear()

Input : None

Output : None

Description : Clear all nodes below

Operation: split()

Input : None

Output : None

Description : Creates four nodes on current quadtree

Operation: getIndex(e : Entity) : Int

Input : e : Entity - entity to find index for

Output : Quadrant entity is in

Description : Finds the entity in the quadtree and returns quadrant

Operation: insert(e : Entity)

Input : e : Entity - entity to insert Output :

None

Description : Inserts entity into quadtree

Operation: retrieve(e : Entity) : ArrayBuffer[Entity]

Input : e : Entity - the entity to check against

Output : ArrayBuffer of entities

Description : Using Entity, retrieves all entities in given entity quadrant

67

3.7.2 Rectangle

Figure 68: Rectangle Class Diagram

Name Type Description

x Int Top left corner location of

rectangle (x-axis)

y Int Top left corner location of

rectangle (y-axis)

width Int Width of Rectangle

height Int Height of Rectangle

68

Name Type Description

3.8 Factories

Figure 69: Factories

There are three factories that Ayai uses. The ItemFactory, ClassFactory, and

EntityFactory and all are needed to fill in the information needed for the specific

type.

69

3.8.1 ClassFactory

Figure 70: ClassFactory Class Diagram

ClassFactory is used on bootup to create all initial classes in the game and store

them in memory.

Operations

Operation: bootup(world : World)

Input : world : World - the world to store classes

Output : None

Description : Read all necessary input files and create Classes

Operation: buildStats(stats : Option[List(Stats)]) : Stats

Input : stats : Option[List(Stats)] - an option for returned stats

Output : Returns stats created

Description : Takes in an Option for Stats and returns the potential stats class

Operation: getClassesList(path : String) : List[AllClassValues]

Input : path : String - path to a classes file

Output : Returns a list of classes retrieved from file

Description : Takes in a path file and return all classes read in

70

3.8.2 ItemFactory

Figure 71: ItemFactory Class Diagram

ItemFactory is used on bootup to create all initial items in the game and store them

in memory.

Operations

Operation: bootup(world : World)

Input : world : World - the world to store items

Output : None

Description : Read all necessary input files and create items

Operation: buildStats(item : AllItemValues) : Stats

Input : stats : AllItemValues - a case class with info of item

Output : Returns stats created

Description : Takes in a AllItemValues for Stats and returns the stats class

Operation: getItemsList(path : String) : List[AllItemValues]

Input : path : String - path to a classes file

Output : Returns a list of classes retrieved from file

Description : Takes in a path file for items and returns all items read in

Operation: addStats(item : Entity, stats : Stats)

Input : item : Entity - Entity to add stats to

stats : Stats - Stats to add to Entity

Output : None

71

Description : Adds given stats file to item entity

Operation: instantiateWeapons(world: World, items: List[AllItemValues])

Input : world : World - world to add item entities to

items : List[AllItemValues] - List of weapons items

Output : None

Description : Adds weapons to world

3.8.3 QuestFactory

Figure 72: QuestFactory Class Diagram

QuestFactory is used on bootup to create all initial quests in the game and store

them in memory.

Operations

Operation: bootup(world : World)

Input : world : World - the world to store quests

Output : None

Description : Read all necessary input files and create quests

Operation: getQuest(path: String)

Input : path : String - file of stored quests

Output : Returns a List[Quest] of quests loaded in

Description : Adds quests to game

72

3.8.4 GraphFactory

Figure 73: GraphFactory Class Diagram

GraphFactory is used with the AI components to see if a AI’s position is in the map

and to generate a graph of allowable positions

Operations

Operation: convertPositionToGrid(position: Position, ratio:Float)

Input : position: Position - the position to use
ratio: Float - Ratio to divide position by Output :
Returns graph of allowable positions
Description : Convert the position to a grid

Operation: generateGraph(world: World)

Input : world: World - world to collect tilemap from

Output : Returns a 2D array of nodes

Description : Generates a graph of nodes

Operation: inbounds(max: Int, indexes: Int*)

Input : max: Int - max length to check against

indexes: Int* - list of indexes to check inbounds Output : Returns boolean if one does

not match

Description : Checks if list of indexes is in range

73

3.8.5 EntityFactory

Figure 74: EntityFactory Class Diagram

EntityFactory is used to create the initial room’s files and import them into the world

and also used to create all character entities.

Operations

Operation: loadCharacter(world: World,webSocket: WebSocketFrameEvent,

entityId: String, characterName: String, x: Int, y: Int, actor : ActorSelection)

Input : world : World - the world to add player entity
entityId: String - the database id for the player
characterName: String - the players name x: Int - the x
coordinate of player y: Int - the y coordinate of player

actor : ActorSelection - the Connection to the player computer

Output : None

Description : Create character entity and create components based on given

information

Operation: createRoom(world : World, roomId : Int, tileMap : TileMap)

Input : world : World - the world to add room too roomId :

Int - the Id to give to room

tileMap : TileMap - The tilemap component to add to the room

Output : None

Description : Creates room entity and gives entity roomId and tilemap component

74

Operation: loadRoomFromJson(world: World,roomId: Int,jsonFile: String)

: Entity

Input : world : World - the world to add room too
roomId : Int - the Id to give to room jsonFile : String -
file to read and create room with
Output : Returns created room Entity

Description : Takes in room JSON File and reads in values and creates Entity with

it

3.9 Quest Generation *

3.9.1 Overview

75

Figure 3.9.1 Quest Generation

The Quest Generation system is intended to instantiate Quest objects, and all their

related components at any point during the main application game loop. This allows

for the creation of quests with objectives directly corresponding to the world state,

and content tailored to the gameplay preferences and playstyle of a given player.

3.9.2 Components

A number of components are defined to aid in the passage of data back and forth

between the QuestGenerationSystem, and the individual entities corresponding to

objects in the game world.

Figure 3.92 Components of Quest Generation

3.9.2.1 GenerateQuest

GenerateQuest is a component used for passing data back and forth between a

given entity and the QuestGenerationSystem instance in the world.

Attributes

Name Type Description

initiator Entity A reference to the entity which initiated the request to the quest generation system.

memory Memory A reference to the Memory component used in the perception system.

76

3.9.2.2 QuestHistory

QuestHistory is a component which contains a record of all quests an entity has

completed, as well as a continually updated model of player preferences.

Attributes

Name Type Description

completed Quest [] A list of all quest objects which have been marked “completed” for this entity.

preferences PlayerRoles An object containing the current estimate of the gameplay preferences of a player.

Operations

Operation: QuestCompleted(Quest: quest)
Input: The quest which should be added to the completed quest list.
Output: None
Description: Adds a quest passed as a parameter to the list of completed quests, stored within the
QuestHistory component, updating the preferences field.

3.9.3 Systems

All manipulation of data is handled by a single EntityProcessingSystem, which is

responsible for the majority of actions in the quest generation framework.

Figure 3.9.3 QuestGenerationSystem

77

3.9.3.1 QuestGenerationSystem

This system extends the base EntityProcessingSystem, and is designed to operate on

entities which contain the GenerateQuest component, generating a new quest,

returning it to the original initiator. Quests instantiated by this system will be

constructed based on input from other components, such as the QuestHistory,

contained within the initiating entity.

Operations

Operation: processEntity (E: Entity, delta: Integer)
Input: the entity to be processed, the time difference from the last frame.
Output: Quest
Description: Processes information passed by entity, and passes a new quest object back to the initiating
entity.

3.9.4 Architecture

3.9.4.1 Impact on existing architecture

78

Figure 3.9.4.1 A Impact

79

The above diagram shows where in the greater system the Quest Generation

System lives.

Figure 3.9.4.1 B Impact

The quest generation framework integrates into the existing project at the ECS level,

and does not interact with the underlying architecture. Required components are

attached to existing entities in the game world. The quest generation system is

registered with the existing Entity Processing System framework.

3.9.4.2 System Sequence Diagram

The Quest Generation process is managed primarily by three objects. The NPC entity,
the Player entity, and the Quest Generation System. All character entities in the
game world have an attached QuestBag component. When a player interacts with an
NPC, the first quest in their QuestBag component is presented, and the player is
allowed to accept or reject the proposal. Should they accept, the quest is added to
the player’s QuestBag.

When a QuestBag component presents the last quest in the queue, another must be

generated to take its place. Here, a “GenerateQuest” component is instantiated,

and added to the NPC entity object. This acts as a way to transmit relevant data to

the QuestGenerationSystem, which employs the EntityProcessingSystem interface

to locate and process all GenerateQuest components. The EntityProcessingSystem

uses information about the source, and destination entities to instantiate and

configure a new Quest object adding Objectives to the Quest’s internal objective list

to match the preferences of the player stored in the QuestHistory component,

before appending it to the source QuestBag. Once this process is complete, the

newly generated quest may be presented to the player.

80

Figure 3.9.4.2 Quest Generation Sequence Diagram

81

3.9.5 Algorithms

3.9.5.1 PaSSAGE

http://www.aaai.org/Papers/AIIDE/2008/AIIDE08-041.pdf

A simplified method of representing player preferences within a game world by a

series of roles. The actions of players modify the influence of each role on story and

content generation. This model will be utilized in quest generation to steer the

scope, and type of content being presented to players.

3.10 Perception *

3.10.1 Components

Figure 3.10.1 Components

http://www.aaai.org/Papers/AIIDE/2008/AIIDE08-041.pdf

82

3.10.1.1 Sense

Sense Component is an abstract component that is attached to an entity to indicate the attached entity can
perceive through

Operation: notifySystem()
Input: None

Output: None

Description: Notifies relevant systems of state changes. Overwritten to link to relevant system.

3.10.1.2 Vision

Vision is a component that would indicate the attached entity is capable of seeing things.

Attributes

Name Type Description

visionRange Integer A rating of how far the attached entity can see. Used in calculating Line of Sight.

Operations

Operation: defLine(start: Position, end: Position): Boolean

Input: Starting point and ending point of the line to be drawn.
Output: Boolean indicating whether there unobstructed is line of sight between two entities.
Description: Draws a line between two positions and determines whether there is unobstructed line of sight
along the line. BresenhamLOS and WuLOS will provide implementations that use their respective algorithms.

Algorithms

 Bresenham’s line algorithm

 Wu’s line algorithm

3.10.1.3 Hearing

Hearing is a component that indicates the attached entity can listen to sounds.

Attributes

Name Type Description

hearingAbility Integer A rating of how well the attached entity can listen to sounds.

83

3.10.1.4 Sound-Producing

Attributes

Name Type Description

intensity Integer A rating of how loud the associated sound entities will be when created..

3.10.1.5 Memory

Memory is a component that indicates the attached entity can remember things. The Memory system is also
used in Quest Generation.

Attributes

Name Type Description

memoryAbility Integer A rating of how well the attached entity can remember things.

entitiesRemembered List[MemoryContents] A collection of the things the attached entity remembers.

3.10.1.6 Memory Contents

Memory Contents is a data structure used by the Memory sense to show what information is remembered.

Attributes

Name Type Description

entityID Integer The ID of the entity

entityPosition Position The last remembered postion of the entity.

relationship Integer A score showing the indicated entities’ opinion of the attached entity. A higher score
means a more favorable opinion.

84

3.10.2 Entities

Figure 3.10.2 Entities

3.10.2.1 SoundEntity

An entity that contains aspects similar to a real world sound wave. These include direction, intensity, and data
or information.

Attributes

Name Type Description

intensity Integer A rating corresponding to the loudness of the sound

direction MoveDirection The direction the sound is traveling.

information List[Entity] The entity or entities that the sound contains. Can be empty.

85

3.10.3 Systems

Figure 3.10.3 Systems

3.10.3.1 Primary System: Perception System

This system serves as the main thoroughfare for all senses defined at a given point. It allows for entities to be
assigned an unlimited amount of defined senses and will control their various systems and subsystems.

Attributes

Name Type Description

SenseSystems List[System] A collection of systems relevant to defined senses.

Operations

Operation: process(E: Entity, delta: Integer)
Input: the entity to be processed, the time difference from the last frame.
Output: None

Description: Process the Entity, pass to relevant subsystems.

86

Operation notify()
Input: None

Output: None

Description: Handle any state changes in the observed entity / component.

3.10.3.2 Seconary/Included System and Subsystems

3.10.3.2.1 Vision System

This system controls an entities ability to use a sense of sight. Entities will have set limitations on aspects such
as how far things can be seen, and algorithms determining line of sight calculations

Operations

Operation: process(E: Entity, delta: Integer)
Input: the entity to be processed, the time difference from the last frame.
Output: None

Description: Process the entity’s Line of Sight.

Operation notify()
Input: None

Output: None

Description: Handle any state changes in the observed entity / component.

3.10.3.2.2 Hearing System

This system controls an entities ability to use a sense of hearing. Entities are able to determine whether there is
a sound entity within range and information about that sound entity (defined above). Links to the pathfinding
system to determine sound propagation.

Operations

Operation: process(E: Entity, delta: Integer)
Input: the entity to be processed, the time difference from the last frame.
Output: None

Description: Process the entity’s Line of Sight.

Operation notify()
Input: None

Output: None

Description: Handle any state changes in the observed entity / component.

Operation: calculateSoundPropagation(S: SoundEntityr)
Input: the SoundEntity to be propagated

Output: None

Description: Spread the sound entity over an area, affected by the sound’s intensity and direction.

87

3.10.3.2.3 Memory System

The memory system controls an entity’s ability to remember things, adding remembered entities into their
memory and calculating memory degradation over time.

Operations

Operation: process(E: Entity, delta: Integer)
Input: the entity to be processed, the time difference from the last frame.
Output: None

Description: Process the entity’s memory

Operation notify()
Input: None

Output: None

Description: Handle any state changes in the observed entity / component.

Operation: rememberEntity(rememberingEntity: Entity, entityRemembered: Entity)
Input: the entity whose memory bank is being added to, the entity that is being remembered.
Output: None

Description: Process the Entity, pass to relevant subsystems.

Operation calculateMemoryAttenuation(M: Memory, time: Integer)
Input: the memory object that is being degraded, the amount of time that has passed.
Output: None

Description: Two entities who are able to communicate share perceived entities between each other

3.10.3.2.4 Communication System

The communication system provides the ability for two entities to share perceived entities between one
another.

Operations

Operation: process(E: Entity, delta: Integer)
Input: the entity to be processed, the time difference from the last frame.
Output: None

Description: Process the entity

Operation notify()
Input: None

Output: None

Description: Handle any state changes in the observed entity / component.

88

Operation: inContact(E: Entity, E2: Entity): Boolean

Input: the two entities who are trying to communicate

Output: Boolean indicating whether these entities can or can not communicate

Description: Process the Entity, pass to relevant subsystems.

Operation communicate(E: Entity, E2: Entity)
Input: the two entities who are trying to communicate

Output: None

Description: Two entities who are able to communicate share perceived entities between each other

3.10.4 Architecture

The perception framework integrates into the existing project at the ECS level.

Figure 3.10.4 A Integration

89

Figure3.10.4 B Impact

90

3.10.5 Process and Design Patterns

3.10.5.1 Sequence Diagram

Figure 3.10.5.1 Sequence Diagram

91

3.10.5.2 Entity Component System

The perception framework integrates into the existing project through the Entity

Component System. The perception framework uses mostly components to

represent different senses and systems to process how entities use those

sense.

3.10.5.3 Observer Pattern

The observer pattern is used to maintain communication between

SenseComponents and the system which processes that Sense. This allows the

perception framework as a whole to be more modular and extensible, rather than

having a single centralized system which processes all of the senses.

3.10.5.4 Strategy Pattern

The strategy pattern is used to keep algorithm implementations separate and easily

interchangeable. Rather than a Line of Sight algorithm being hard coded into the

Vision System, the Vision Component can override the relevant method. The

selection of algorithms would be decided by the Game Definition File.

3.10.6 Algorithms

3.10.6.1 Bresenham’s line algorithm

http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

 Bresenham uses interger arithmetic to draw an approximation of the line.

 Bresenham works by dividing the change of the major axis by the change in the minor axis.

 The "error" is tracked, the separation between the real line and the approximated line.

 The error is steadily increased across the major axis by the change of the major axis by the change in the
minor axis.

 If the "error" is more than .5, the rasterization of the minor axis is increased by

one and the error is decreased by one.

3.10.6.2 Wu’s line algorithm

http://en.wikipedia.org/wiki/Xiaolin_Wu%27s_line_algorithm

 Wu’s algorithm uses anti-aliasing to draw a more precise line, but takes longer than Bresenham’s
algorithm.

 Wu's algorithm draws lines in a similar way to Bresenham, but draws multiple lines,
with their closeness to the "true" line determining that line's gradient.

http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
http://en.wikipedia.org/wiki/Xiaolin_Wu%27s_line_algorithm

92

3.11 Pathfinding *

3.11.1 Components

3.11.1.1 Pathfinder

Figure 3.11.1.1 Pathfinder

Pathfinder is an abstract Component used to indicate that the attached entity utilizes pathfinding. Concrete
implementations will inherit from this component and implement different pathfinding algorithms.

Attributes

Name Type Description

lastPath Option[List[Position]] Stores the last path generated for this entity for caching purposes. Is null if
not path has been generated for this entity yet.

Operations

Operation: findPath(map: Array[Array[Node]], start: Position, end Postion)

Input: map: Array[Array[Node]], start: Position, end Postion
Output: returns Option[List[Position]]

Description: If defined, a list of positions the entity can traverse to arrive at its destination. If the list is empty,
the entity has arrived at its destination. If null, there is no valid path from the entity to its destination position

93

3.11.1.2 AStar

Figure 3.11.1.2 AStar

AStar is a concrete class inheriting from Pathfinder. AStar implements Pathfinder’s

abstract.

3.11.1.3 Dijkstra

Figure 3.11.1.3 Dijkstra

Dijkstra is a concrete class inheriting from Pathfinder. Dijkstra implements Pathfinder’s abstract method
“findPath” with Dijkstra's algorithm to solve the single-source shortest-path problem.

94

3.11.1.4 DistanceHueristic

Figure 3.11.1.4 DistanceHeuristic

DistanceHeuristic is an interface which requires a single method, “estimateDistance” be implemented by
inheritors. It is a dependency of the Pathfinder abstract component.

Operations

Operation: estimateDistance(start: Position, end: Position)
Input: start: Position, end: Position
Output: Outputs: Integer
Description: The distance, measured in Tiles, from start to end

95

3.11.1.5 ManhattanDistance

Figure 3.11.1.5 ManhattanDistance

ManhattanDistance is a realization of the DistanceHeurisitic interface. It implements the
“estimateDistance” using the Manhattan Distance calculation. This algorithm is

described in greater detail in the algorithms section.

3.11.1.6 DiagonalDistance

.

Figure 3.11.1.6 DiagonalDIstance

DiagonalDistance is a realization of the DistanceHeurisitic interface. It implements the
“estimateDistance” using the Diagonal Distance calculation. This algorithm is

described in greater detail in the algorithms section.

96

3.11.2 Systems

Figure 3.11.2 Systems

3.11.2.1 PathfindingSystem

PathfindingSystem is a concrete class inheriting from EntityProcessingSystem. The
PathfindingSystem implements EntityProcessingSystem’s “processEntity” function and
selects all Entities in the current World which have the Pathfinder Component bound
to them and runs the “findPath” method.

3.11.3 Design

3.11.3.1 Sequence Diagram

97

Figure 3.11.3.1 Sequence Diagram

Sequence Diagram showing the process of how paths get updated on each game

tick.

3.11.3.2 Dependency Injection/Inversion of Control

The Pathfinder component uses the “Cake pattern”, which is a Scala construct used
to implement dependency injection. Scala traits, which are similar to Java interfaces,
allow a self-type to be declared. This “self-type” is a type constraint on the Interface,
mandating that it be mixed in with a class which conforms to its self-type. Pathfinder
utilizes the “self-type” declaration but declaring a self-type of DistanceHeuristic. This
means that whenever a class is created which conforms to Pathfinder, it must also
conform to DistanceHeuristic. This method is used in favor of inheritance as it keeps
the “is a” vs. “requires a” semantics correct at the code level.

3.11.3.3 Strategy Pattern

Using the “Cake Pattern” described above, we are also able to implement a version of
the Strategy Pattern which enables the system to select an appropriate algorithm at

98

runtime. Due to the “stackable” nature of Scala traits and the Entity-Component
system, different pathfinding and heuristic algorithms can be selected based on
values of variables determined at runtime. This gives the programmer extreme
flexibility in defining Entity behavior and can serve as the basis for more complex AI
logic.

3.11.4 Algorithms/Data Structures

3.11.4.1 A* search algorithm [1]

The A* search algorithm is a type of best-first search. A* decides the order of nodes
to explore by using past knowledge (the distance from the starting point of the
search to the current point) in addition to using “future” knowledge, which is in the
form of an admissible heuristic. A* is widely used in games as

3.11.4.2 Dijkstra’s algorithm [2]

Dijkstra’s algorithm, like A* search, is an algorithm for finding the shortest path
between two nodes in a graph.

3.11.4.3 Manhattan Distance

Equation used to find the distance between two coordinates by calculating the
summation of the absolute differences of their Cartesian coordinates [3].

3.11.4.4 Diagonal (Chebyshev) Distance

Equation used to find the distance between two vectors along any coordinate
dimension. On a 2-dimensional coordinate system, it is defined as:

where

and

3.11.4.5 Binary Heap (java.util.TreeSet)

99

A binary heap is used to represent the queues (ex. open and closed sets in A* within
the search algorithms. This data structure is used primarily for its O(logn) worst case/
O(1) average performance on insert and its O(logn) worst case performance for
delete.

3.11.5 Architecture

Figure 3.11.5 A Pathfinding

100

Figure 3.11.5 B Impact to Existing Architecture

101

3.11.6 References

[1] Hart, P., Nilsson, N., & Raphael, B. (1968). A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics, 100-107.

[2] Dijkstra, E. (1959). A Note On Two Problems In Connexion With Graphs. Numerische
Mathematik, 269-271.

[3] Eugene F. Krause (1987). Taxicab Geometry. Dover. ISBN 0-486-25202-7

102

3.12 Map Generation *

Figure 3.12 Map Generation

103

The Map Generation system is responsible for the construction and verification of

maps in the Ayai game. Whenever a player logged on to the web server reaches the

edge of a generated map, the Map Generation system constructs a new map,

verifies that the map is traversable, and serves it up to any relevant players

browsers.

3.12.1 WorldGenerator

Figure 3.12.1 WorldGenerator

The WorldGenerator is a class that is instantiated in its own actor, and is responsible for all map generation
calls.

Attributes

Name Type Description

getRoomsToBuild Set[Int] Fetches a list rooms (as identified by an integer) that need to be built.

buildRoom Unit Given a room id, build the room and add it to the world.

104

3.12.2 MapGenerator

Figure 3.12.2 MapGenerator

The MapGenerator class is responsible for the actual generation of maps. When the WorldGenerator calls for a
map to be generated, all underlying map generation complexity is contained within the MapGenerator.

Attributes

Name Type Description

doesPathExist Boolean Given a map, determine whether or not a traversable path exists
between a starting point and end point.

calculateCollisionMap Array[Array[Int]] Creates a map of tiles where each tile’s value is equal to how many
non-collidable neighbors it has. Collidable tile’s value is 0.

ensureTraversable Boolean Ensures that the generated map is traversable by players.

4 Network System

This section defines the networking system which is responsible for receiving,

interpreting, and processing network messages coming from the frontend.

Additionally the network system is provides services for login, character creation,

character selection, and the world editor. The networking system distributes

workfromaNetworkMessageInterpreterSupervisorwhichsplitsJSONmessages from the

105

frontend to a pool of NetworkMessageInterpreters each of which individually

converts the partition of messages it has received into different NetworkMessages.

These NetworkMessage are then added to the NetworkMessageQueue. Once per

frame rate the game loop flushes all the messages out of the queue and sends them

to the NetworkMessageProcessorSupervisor. This supervisor in turn distributes them

among a pool of NetworkMessageProcessors.

4.1 NetworkMessageQueue

Figure 75: NetworkMessageQueue Class Diagram

NetworkMessageQueue is an actor that only accepts two types of messages. These

messages are described below. The only member of this actor is an array called

messages which stores case classes of type NetworkMessage.

Operation: AddInterpretedMessage(message: NetworkMessage)

Input: message: NetworkMessage - The message to be added to the queue.

Output: None

Description: Adds the message to the queue.

Operation: FlushMessages()

Input: none

Output: an array full of all the messages stored in the queue since the last flush.

Description: Returns the messages that have been stored since the last flush and

empties the queue.

4.2 NetworkMessageInterpreter

Requirements met: 4.2

106

Figure 76: NetworkMessageInterpreter Class Diagram

NetworkMessageInterpreter is an actor which only accepts one type of message

containing the case class InterpretMessage. InterpretMessage contains a string

which is currently JSON. This may be optimized later to decrease bandwidth usage.

However for now the JSON must contain an object with a field "type". This type field

is then sent through a switch. The output of each case is a case class deriving from

NetworkMessage which is sent to the NetworkMessageQueue actor instead of being

outputted in a more traditional manner. The follow cases contain the other fields

that must be specified along with the type field for each type.

Operation: interpretMessage(wsFrame: WebSocketFrameEvent

Input: wsFrame: WebSocketFrameEvent – The web socket the user connect with.

Output: Depends on the type of the message.

Description: Reads the message out of the WebSocket frame and extracts the type.

It then matches on the type and handles it in the following ways.

Case: "init"(characterName: String)

Input: characterName: String - The name of the character to be added to the world.

Output: Adds AddNewCharacter and SocketCharacterMap messages to the queue.

Description: Creates an id for the character. It passes that id into the queue in the

AddNewCharacter message with the characterName, the WebSocket, and starting

positions. It also passes the character id and web socket to the queue via a

SocketCharacterMap.

Case: "move"(start: boolean, dir: Int)

Input: start: boolean - Whether the action is starting or stopping.

dir: Int - An integer value 0-7. 0 is up and each subsequent value is 45 degrees to the

right of the previous.

Output: Adds a MoveMessage to the queue containing the WebSocket, aMoveDirection, and

start.

107

Description: Converts the dir int to a MoveDirection which is UpDirection,

UpRightDirection, etc.

Case: "attack"()

Input: none

Output: Adds an attack message to the queue.

Description: The WebSocket is passed into the queue so that it can use it to look up

which character issued the attack.

Case: "chat"(message: String, receiverName: String)

Input: message: String - The chat message to be sent.

receiverName: String - The name of the character the message is being sent to.

Output: Adds a ChatMessage to the queue which contains the message, the

receiverName, and the WebSocket of the sender.

Description: the WebSocket is passed into the queue so that it can use it to look up

which character sent the message.

Requirements met: 3.3.10.1.2

Case: "open"(containerId: String)

Input: containerId: String - The id of the container that is being opened by the

character.

Output: Adds an OpenMessage to the queue.

Description: Passes the containerId and the WebSocket of the opener to the queue

via the OpenMessage.

4.3 NetworkMessageProcessor

Figure 77: NetworkMessageProcessor Class Diagram

108

TheNetworkMessageProcessor receives NetworkMessages from the game loop and

processes them in a variety of ways. Depending on the subtype of the

NetworkMessage it is processed differently. The following cases show these

different ways of processing NetworkMessages. These NetworkMessages store

values which are essentially parameters to the case statement.

Name Type Description

actorSystem ActorSystem The Akka Actor System which

stores all the actors.

world World World which all entities

belongs to.

socketMap ConcurrentMap[String, String] Maps character ids to the id of

their WebSocket connection.

Case: AddNewCharacter(webSocket: WebSocketFrameEvent, id: String,

characterName: String, x: Int, y: Int)

Input: webSocket: WebSocketFrameEvent - TheWebSocket the character is

connected to.

id: String - the entity id of the character to be added to the world. Not to be

confused the id property from the database.

characterName: String - the name of the character to be added.

Output: Writes an initial message to the WebSocket so the frontend can load the

game.

Description: Loads the character out of the database and creates an entity for it.

Calculates level and adds the character to the world.

Case: AttackMessage(webSocket: WebSocketFrameEvent)

Input: webSocket: WebSocketFrameEvent - TheWebSocket the character is

connected to.

Output: None

Description: Retrieves the character entity that is mapped to the WebSocket. It then

spawns an attack entity in front of that character. Any entities who collide with that

attack entity suffers the effects of that attack.

Case: OpenMessage(webSocket: WebSocketFrameEvent,containerId: String)

Input: webSocket: WebSocketFrameEvent - TheWebSocket the character is connected

to. containerId: String - The id of the container entity which is being opened. Output:

Writes a message to the WebSocket informing the frontend that the container has been

opened.

Description: Removes the items from the container entity specified by containerId and

puts them in the player’s inventory.

109

Case: SocketCharacterMap(webSocket: WebSocketFrameEvent,id: String)

Input: webSocket: WebSocketFrameEvent - TheWebSocket the character is

connected to. id: String - The id of the character entity which is being added to the

socketMap.

Output: None

Description: Adds an entry to the socketMap linking the character entity id to the

WebSocket id. This allows for lookup of characters based on WebSockets.

Case: ChatMessage(webSocket: WebSocketFrameEvent, message: String,

receiverName: String)

Input: webSocket: WebSocketFrameEvent - TheWebSocket the character is

connected to.

message: String - The chat message that is being sent.

receiverId: String - The id of the character entity which the chat message is sent to.

Output: Writes a chat message to the receiving character’s WebSocket. Also writes

the message to the database.

Description: Looks up the sending character by the WebSocket id. Sends the chat

message to the receiving character. Stores the message and both characters in the

databse.

4.4 SockoServer

The SockoServer handles all requests from the frontend. It’s only operation "run"

sends handles requests differently based on whether they are an HTTPRequest or

WebSocketFrame. HTTPRequests are further handled based on the path.

Requirements met: 3.1, 3.2

WebSocketFrame When a WebSocketFrame comes it is simply sent to the

NetworkMessageInterpreter wrapped within a InterpretMessage(wsFrame)case class

where wsFrame is the WebSocket.

Path: /login Sends a LoginPost(httpRequest) message to the

AuthorizationProcessor.

Path: /register Sends a RegisterPost(httpRequest) message to the

AuthorizationProcessor.

Path: /chars Sends a CharactersPost(httpRequest) message to the

AuthorizationProcessor.

4.5 AuthorizationProcessor

The AuthorizationProcessor is responsible for handling user actions outside of the

game world. These actions are received at different routes. The

AuthorizationProcessor receives different messages from the SockoServer. These

messages are handled the following ways:

110

Case: LoginPost(request: HttpRequestEvent)

Input: request: HttpRequestEvent - The HTTPRequest which user sent.
username: String - An encrypted username for the user.
password: String - An encrypted password for the user.
Output: If the credentials are valid a HTTP 200 response with a token which can be

used for further secure communication. If the credentials are invalid then a HTTP

401 response is outputted.

Description: Validates the user’s credentials and either returns an authorization

token or a HTTP 401 response.

Case: RegisterPost(request: HttpRequestEvent)

Input: request: HttpRequestEvent - The HTTPRequest which user sent.
username: String - An encrypted username for the user.
password: String - An encrypted password for the user.
Output: A 200 HTTP response if the username is not taken or a 401 HTTP response if

it is.

Description: Registers the user within the database if the username is not taken.

Case: CharactersPost(request: HttpRequestEvent)

Input: request: HttpRequestEvent - The HTTPRequest which user sent.

token: String - The authorization token that was generated upon login. Output: A list

of character data containing each character’s name, level, and class. Description:

Looks up all the characters associated with the user’s account and returns them in a

JSON list.

5 Ayai Web Application

5.1 Overview

This section covers the portion of the application that handles account details

outside of the game client and world editor. The user interacts with these modules

to handle character creation, character selection, and account settings.

5.2 Login Page

Requirements met:

3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.1.5, 3.1.6

The login module handles account registration and authenticating user’s
information. Users enter their information and choose to either login or register

111

with the information after being validated by the system. After this, the user is sent
to the character selection screen.

5.3 Character Creation

Figure 78: Activity diagram for creating a character

Requirements met:

3.2.1.6, 3.2.2.1, 3.2.2.2, 3.2.2.3, 3.2.2.4, 3.2.2.5, 3.2.2.6, 3.2.2.7, 3.2.2.7, 3.2.2.8,

3.2.2.9, 3.2.2.10, 3.2.2.11

This module allows users to create characters to play in the game. Users are
presented with a list of characters and their descriptions. Once they choose their
desired class, they choose an available character name and submit their
preferences.

112

5.4 Character Selection

Figure 79: Activity diagram for selecting a character

Requirements met:

3.2.1.1, 3.2.1.5, 3.2.1.6

This module allows users to select their character. Once they have made their

choice, they load into the game and begin playing.

113

5.5 Changing Settings

Figure 80: Activity diagram for changing account settings

Requirements met:

3.2.3.1, 3.2.3.2, 3.2.3.3, 3.2.3.4, 3.2.3.5

This module allows users to change their settings. They are presented with a form

that allows them to set their email address and password.

114

6 Ayai World Editor

6.1 Searching

Figure 81: Activity diagram for searching the world editor

Requirements met:

2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.1.5

This module allows users to search for entries within the world editor. As users type,

the system makes suggestions to help them find what they are looking for.

115

6.2 Creating and Editing a New Entry

Figure 82: Activity diagram for adding an entry to the world editor

116

Requirements met:

2.1, 2.2, 2.3, 2.4, 2.5, 2.6

This module allows users to add the data that defines the game. Entries are objects
such as classes, items, and spells. Once in the editor section, a user searches for an
existing entry or uses the menu (as defined in the Ayai Software Requirements
Document). To create a new entry, a user creates a new entry by going to that
category’s overview page where they find a button to create a new entry. At this
point, they make changes that are relevant for that category. The user saves or
cancels any changes after they finish.

7 Game Client

7.1 Overview

Figure 83: Game Client - UML Diagram

The Game Client is the frontend implementation of the Ayaiproject. It is a browser

game leveraging WebGL,HTML5 canvas, and WebSocket technologies. The Game

Client uses WebSockets to send requests to the server and receive responses,

interpreting the data it receives to render the views in either WebGL canvas (Sprites

and TileMaps) or HTML elements (UI Elements).

The game client makes extensive use of the open source JavaScript project

Phaser.js (http://phaser.io/) in the following areas:

• Rendering the map and entity sprites in WebGL

• Mouse/Keyboard input

117

• Audio (Music and Sound Effects)

The full documentation for Phaser.js can be found here:

http://gametest.mobi/phaser/docs/Phaser.html

118

7.2 Graphics

Figure 84: Game Client - UML Diagram - Graphics

119

7.2.1 Display

Attributes

Name Type Description

unitFrames Array[Unitframe] An array containing a

reference to each Unitframe,

including player, target, and

group unitframes

inventory Inventory Reference to the singleton

Inventory object

actionBar ActionBar Reference to the singleton

ActionBar object

chat Chat Reference to the singleton

Chat object

questLog QuestLog Reference to the singleton

QuestLog object

peopleList PeopleList Reference to the singleton

PeopleList object

tileMap Phaser.Tilemap Reference to renderable

Phaser tilemap - constructed

with a Tiled JSON object

Operations

Operation: renderMap(tileset: string, tilemap: string)

Input : tileset : string - name of the tileset loaded by Phaser tilemap : string - name

of the tilemap loaded by Phaser

Output : None

Description : Indexes the loaded tileset and tilemap by their names, queries the

browser for its dimensions and sets up the game camera/entities, then passes the

tilemap to Phaser to be rendered in WebGL

7.2.2 UIElement

Attributes

Name Type Description

isOpen boolean A flag that denotes whether or
not this UI Element is open
and should be shown on
screen

120

Operations

Operation: toggle()

Output : None

Description : Opens the UI element if isOpen is false and sets isOpen to true.

Closes the UI element if isOpen is true and sets the isOpen to false.

Operation: update(json)

Input : json : string

Output : None

Description: Synchronizes the UI element on the given JSON, updating the view with

the new values.

7.2.3 UnitFrame

Attributes

Name Type Description

isOpen boolean A flag that denotes whether or
not this UI Element is open
and should be shown on
screen

entityId string The id of the entity whose

vitals this unitframe is tracking

Operation: toggle()

Output : None

Description : Unused by Unitframes, these elements cannot be hidden by the player

Operation: update(json)

Input : json : string

Output : None

Description: Synchronizes the UI element on the given JSON, updating the view with

the new values. Updates the health, mana, experience, and status effect views on

the unitframe.

Requirements met: 3.3.2, 3.3.3, 3.3.6.1

7.2.4 Chat

Requirements Met: 3.3.10, 3.8.2

121

Attributes

Name Type Description

isOpen boolean A flag that denotes whether or
not this UI Element is open
and should be shown on
screen

Operation: toggle()

Output : None

Description : Unused by Chat, this element cannot be hidden by the player

Operation: update(json)

Input : json : string

Output : None

Description: Synchronizes the UI element on the given JSON, updating the view with

the new values. Updates the chat messages that have been sent to the player.

7.2.5 Inventory

Requirements Met: 3.3.6.1, 3.3.9.1, 3.3.9.4, 3.3.9.2, 3.3.9.3, 3.3.9.6.1, 3.3.9.6.2,

3.3.9.7, 3.3.9.5

Attributes

Name Type Description

isOpen boolean A flag that denotes whether or
not this UI Element is open
and should be shown on
screen

Operation: toggle()

Output : None

Description : Unused by Chat, this element cannot be hidden by the player

Operation: update(json)

Input : json : string

Output : None

Description: Synchronizes the UI element on the given JSON, updating the view with

the new values. Updates the chat messages that have been sent to the player.

122

7.2.6 QuestLog

Name Type Description

isOpen boolean A flag that denotes whether or
not this UI Element is open
and should be shown on
screen

quests Array[Quest] The list of quests that the

player has accepted

Operation: toggle()

Output : None

Description : Opens the UI element if isOpen is false and sets isOpen to true.

Closes the UI element if isOpen is true and sets the isOpen to false.

Operation: update(json)

Input : json : string

Output : None

Description: Synchronizes the UI element on the given JSON, updating the view with

the new values. Updates the list of quests that the player has accepted.

7.2.7 Quest

Name Type Description

name string Name of the quest

description string Description of the quest

level int Level of the quest

rewards Object JavaScript object containing

information for experience,

gold, and items received for

completing the quest

finished boolean Flag which indicates whether

the player has completed this

quest

Operation: toggle()

Output : None

Description : Opens the UI element if isOpen is false and sets isOpen to true.

Closes the UI element if isOpen is true and sets the isOpen to false.

Operation: update(json)

Input : json : string

Output : None

123

Description: Synchronizes the UI element on the given JSON, updating the view with

the new values. Updates the list of players in the same room as the player.

7.2.8 PeopleList

Requirements Met: 3.3.6.3, 3.8.1

Name Type Description

isOpen boolean A flag that denotes whether or
not this UI Element is open
and should be shown on
screen

Operation: toggle()

Output : None

Description : Opens the UI element if isOpen is false and sets isOpen to true.

Closes the UI element if isOpen is true and sets the isOpen to false.

Operation: update(Json)

Input : json : string

Output : None

Description: Synchronizes the UI element on the given JSON, updating the view with

the new values. Updates the list of players in the same room as the player.

7.2.9 Settings Menu

Name Type Description

isOpen boolean A flag that denotes whether or
not this UI Element is open
and should be shown on
screen

Controls Keys[Quest] The list of keys bound to their

functions.

Operation: toggle()

Output : None

Description : Opens the UI element if isOpen is false and sets isOpen to true.

Closes the UI element if isOpen is true and sets the isOpen to false.

124

Operation: update(json)

Input : json : string

Output : None

Description: Synchronizes the UI element on the given JSON, updating the view with

the new values. Updates the list of keys and their bindings.

125

7.3 Game

Figure 85: Game Client - UML Diagram - Game

126

7.3.1 Ayai

Attributes

Name Type Description

playerId String The players ID given by the

server

connection Connection Games connection object

display Display Games display object

gameStateInterface GameStateInterface Games singleton copy of the

gameStateInterface object.

Operation: preload()

Output : None

Description: Starts preloading all the assets. Calls create when the assets are

finished loading.

Operation: create()

Output : None

Description: Creates all the UI elements for the game after the assets are loaded by

preload.

Operation: _msgReceived(msg:Event)

Output : None

Description: Called when a message is received on the websocket connection.

Dispatches the message to the correct location based on the type of message

received.

7.3.2 GameStateInterface

Requirements met: 3.3.4, 3.3.5, 3.3.6, 3.3.7, 3.3.8

Attributes

Name Type Description

character PlayerCharacter The sessions current character

entities Array[Entity] Sprite given to phaser for

rendering

target Entity Current entity which is

selected in the game

127

Operations

Operation: update()

Output : Void

Description : Calls Phaser.JS to rerender the stage.

Operation: sendMovement()

Output : Void

Description : Use phaser.js to detect which keys are down and send the correct

movement messages to the message sender.

Operation: updateEntities(json:String)

Input: json : JSON representation of entities to be updated in string format.

Output : Void

Description : Update the position of entities. Also handle the creation and deletion

of entities.

Operation: addCharacter(json:String)

Input: json : JSON representation of character to be added.

Output : Void Description : Add character entity to GameStateInterfaces list of

entities.

Operation: removeCharacter(json:String)

Input: json : JSON representation of character to be added.

Output : Void Description : Remove character entity to GameStateInterfaces list of

entities.

Operation: handleKeyInputEvent(inputEvent:InputEvent)

Input: json : JSON representation of character to be added.

Output : Void Description : Handle keyboard inputs and send corresponding

messages to the message sender based on which keys are pressed.

Operation: sendAttack()

Output : Void

Description : Send attack message to message sender.

128

7.3.3 InputHandler

Requirements Met: 3.5

Attributes

Name Type Description

boundKeys Array[PhaserKey] List of bound keys.

Operation: registerKeyPresses()

Output : Void

Description : Iterates over the bound keys and register them with the phaser

keypress detection functions.

129

7.4 Net

Figure 86: Game Client - UML Diagram - Net

7.4.1 Connection

Attributes

Name Type Description

webSocket WebSocket The websocket object for the

connection to the backend

Operation: Connection(urlString: String)

Input : urlString : String : string of the url of the backend server

Output : Void

130

Description : Constructor for this class which takes the url of the backend server.

Operation: send(msg:String)

Input : msg : String : string of the message to be sent.

Output : Void

Description : Sends the message through the websocket to the backend.

Operation: connect()

Output : Void

Description : Creates the websocket object and starts the connection.

7.4.2 MessageReceiver

Attributes

Name Type Description

message Object Javascript Object version of

the message after parsing.

Operation: MessageReceiver(message: String)

Input : message : String : JSON string representation of the message.

Output :Void

Description : Constructor for this class which calls parse on the passed in message

string.

Operation: parseMessage(msg:String)

Input : msg : String : text to parse Output : Void

Description : Parses the passed in message and sets the class attribute message to

the parsed object.

Operation: createEvent()

Output : Event

Description : Creates a message received event based on the message which has

been parsed.

8 Database Design

The following is a UML style database diagram. It uses standard conventions. The

only exception is the tag EK. EK stands for entity key. An entity key refers to an

entity defined in the game files.

131

Figure 87: Database Diagram

Table: Account

id: autonumber - A unique id for each account.

username: varchar(20) - The account’s username. Must be 6-20 characters. email:

varchar(20) - The user’s email address. Must be standard email formatting.

password: varchar(20) - The user’s password. Must be 8-20 characters. Description:

Each user of the system creates one account. This account is used for authentication

and linking all the user’s data.

Table: Token

id: autonumber - A unique id for each token.

account_id: long - The account the token belongs to. This is a foreign key referencing

the id field of the account table.

token: char(36) - The authentication token that is created when the user logs in.

This is always 36 characters long.

Description: Each time a user logs in a token is created, sent to them, and stored in

the database. The client uses this token to verify they are still the same user.

Table: Chat

id: autonumber - A unique id for each chat.

sender_id: long - The account that sent the chat message. This is a foreign key

referencing the id field of the account table.

132

message: varchar(255) - The chat message that was sent.

receiver_id: long - The account chat message was sent to. This is a foreign key

referencing the id field of the account table.

is_received: boolean - Indicates whether or not the chat has been received by the

receiver account.

time_sent: datetime - The time the message was sent.

Table: Character

id: autonumber - A unique id for each character.

account_id: long - The account the character belongs to. This is a foreign key

referencing the id field of the account table.

name: varchar(20) - A unique name for the character.

className: char(10) - The class of the character.

experience: int - The character’s progress towards a certain level. The level attribute

is calculated from this number using the experience array from the config files.

room_id: long - The id of the room the character is in. This id references the config

files from which all the game content is loaded.

pos_x: int - The x position of the character within the room.

pos_y: int - The x position of the character within the room.

Table: InventoryEntry

id: autonumber - A unique id for each inventory entry.

character_id: long - The character the item belongs to. This is a foreign key

referencing the id field of the character table.

item_id: long - The item that belongs to the character. This id references the config

files from which all the game content is loaded.

Table: Equipment

id: autonumber - A unique id for each equipment entry.

character_id: long - The character the item belongs to. This is a foreign key

referencing the id field of the character table.

item_id: long - The item that belongs to the character. This id references the config

files from which all the game content is loaded.

slot: varchar(20) - This is the slot that the item is equipped in. When an item is

equipped it is removed from the inventory table and added to the equipment table.

When it is unequipped this process is removed.

9 Game Configuration File *

133

9.1 Purpose

Ayai-AI supports a Game Configuration file used to configure the application’s

artificial intelligence components. This file is used for determining which

algorithm is used for a specific AI module. For example, if a developer writes a

new Map Generation algorithm, that developer is able to configure AI to use

this new algorithm through this file.

9.2 Design

The Game Config file is located at /src/main/resources/gameconfig.ayai

This file takes the form of a JSON object, with the following (example) structure

ai: {

 MapGeneration: "WorldGeneratorAlgorithm",

 Pathfinding: “RandomPathfindingAlgorithm”,

 ...

}

This file is handled entirely by GameConfiguration.scala. In order for a

developer to add support for a new category of AI configuration, they must edit

that file and add support there. In the current iteration, only “MapGeneration”

is supported.

If, while the webserver is running, one of the values in the file is changed, the

system will automatically and immediately reflect that change.

This file is built to be highly extensible, and is not meant to be limited to AI-

related configuration alone. Future support could include tile set configuration,

database configuration, etc.

Glossary

A* a pathfinding algorithm that finds the most efficient path between 2 points.

ACID compliant A set of properties that guarantee that database transactions are

processed reliably (Atomicity, Consistency, Isolation, Durability).

Action A spell or ability a character or an item can perform.

Administrator User with ability to ban users or give access to certain players.

Algorithm a step by step procedure for calculations and data processing.

134

Animation rapid display of static pictures based on certain player movement and

commands.

ArrayBuffer A mutable list.

Authentication verify the user’s credentials on the server to give access to game and

characters.

Backend any processing that takes place remotely from the player’s location.

Breadcrumb A navigation aid which allows users to keep track of their locations

within the program.

Character A single entity in an MMORPG game world which can interact with the

game world.

Character Level Measures the overall effectiveness of a character. As the character’s

level increases, so does the value of their statistics.

Character Statistics (Stats) Measure how effective a given character is at certain

tasks. Example: Strength, Agility, Intellect.

Class a method of differentiating game characters that have different sets of abilities

and statistics.

Component A structure of data which is held inside of an entity.

Cooldown after an attack has been down, there is a time based countdown before

the player can do that same attack again.

Damage A reduction in a character’s health.

Damage Type The type of damage that is being dealt to a character. Examples: fire,

physical, etc.

Database organized collection of data and supports processing of information.

Effect A magical component which applies a status to its target.

Entity A list of components.

Entry An instance of content that defines the objects and actions that make up the

game world.

Experience A value that measures a character’s progress to the next Character Level.

Faction An organization within the game which NPCs may belong to.

Frontend any processing that takes place on the player’s computer/application.

135

Game State The complete knowledge of everything contained within the game at a

current point in time.

Game World The collection of all rooms, or zones and the characters they contain

which are managed by the server(s).

Health A statistic which measures how much damage a character can sustain before

the character dies.

HTTP Secure (HTTPS) An implementation of http with enhanced security..

HyperText Mark Up Language (HTML) The latest revision of a markup language used

to organize content for the web.

HyperText Transfer Protocol (HTTP) An application protocol for distributed, collaborative,

hypermedia information systems.

Java Virtual Machine (JVM) Java Virtual Machine.

Latency time delay experienced by a system.

Mana a resource that a character can expend to use different abilities.

Massively Multiplayer Online Game (MMO) An online video game in which there is a

central game world managed by one or more servers to which many players, or

clients, can connect in order to interact with one another.

Melee a short range attack that is only limited to the area immediately around a

character.

Non-Player Character (NPC) Non-playable characters whose actions are processed by

server(s) of an MMORPG.

Player A player is a person who controls an avatar.

Player Character (PC) The representation of a player in the MMORPG game world.

PostgreSQL An open-source object-relational database management system (ORDBMS) with

an emphasis on extensibility and standards-compliance.

Prop A purely aesthetic visual element which has no impact on game play. (Example:

a bush.).

Quest A mission with one or more objectives, usually resulting in a reward and/or

story advancement when all objectives are complete.

Role Playing Game (RPG) A game in which players control characters intended to

represent themselves.

136

Room One piece of the game world. Rooms will be connected by portals which will

be the only way to enter or leave a room.

Scala A JVM programming language incorporating object oriented and functional programming

paradigms.

Scala Build Tool (SBT) A tool used to compile and run Scala projects.

Sprite A small image which is used to represent a game entity.

Spritesheet A file which has multiple images representing different stages of

animations for a game entity.

Status Effect An effect on a character/player/enemy that increases or decrease a

statistic from the normal amount.

SuperUser a user with access to all abilities and moderation functions of an

application.

Tilesheet A list of sprites for use in building a map.

Web Graphics Library (Web GL) is a javascript API for rendering interactive 3D

graphics and 2D graphics within a compatible browser.

