
Ayai Design Document
Jared Roberts Jarrad Battaglia Ryan Lerch
KurtWheeler RobertMruczek Timothy Hahn

Joshua Henry
February 2014

Advisor: SantiagoOntanon

1

Contents
1 Introduction 5
1.1 Purpose . 5
1.2 Scope . 5
1.3 Context Diagram . 5

2 Architecture 6
2.1 Overview . 6
2.2 Servers . 7

2.2.1 Web Server . 7
2.2.2 Authorization Server . 7
2.2.3 Socko Server . 7
2.2.4 Database . 7

2.3 NetworkMessage Interpretation/Processing 7
2.4 Game State . 8
2.5 Systems . 8

2.5.1 AI System . 8
2.5.2 NetworkSystem . 8

3 Detailed Design 8
3.1 ECSGame Loop . 8

3.1.1 World . 10
3.1.2 Entity . 12
3.1.3 System . 14
3.1.4 EntityProcessingSystem . 15
3.1.5 TimedSystem . 16
3.1.6 IntervalSystem . 17
3.1.7 Component . 18
3.1.8 Game Loop . 18

3.2 Components . 19
3.2.1 Position . 21
3.2.2 Actionable . 21
3.2.3 Attack . 22
3.2.4 Bounds . 22
3.2.5 Character . 23
3.2.6 Frame . 23
3.2.7 Health . 24
3.2.8 Inventory . 26
3.2.9 Velocity . 27
3.2.10 Time . 27
3.2.11 Mana . 28
3.2.12 Stats . 30
3.2.13 Stat . 30
3.2.14 Transport . 31
3.2.15 NetworkingActor . 32

2

3.2.16 Respawn . 32
3.2.17 TileMap . 33
3.2.18 ItemUse . 34
3.2.19 Experience . 35
3.2.20 Cooldown . 36
3.2.21 Quest . 37
3.2.22 QuestBag . 38
3.2.23 Equipment . 38

3.3 Items . 40
3.3.1 Item . 41
3.3.2 ItemType . 42
3.3.3 Weapon . 42
3.3.4 Weapon . 43

3.4 Systems . 44
3.4.1 MovementSystem . 45
3.4.2 CollisionSystem . 46
3.4.3 HealthSystem . 48
3.4.4 RespawningSystem . 48
3.4.5 FrameExpirationSystem . 49
3.4.6 NetworkingSystem . 50
3.4.7 NPCRespawningSystem . 51
3.4.8 LevelingSystem . 52
3.4.9 StatusEffectSystem . 52
3.4.10 CooldownSystem . 53
3.4.11 ItemSystem . 54
3.4.12 AttackSystem . 55
3.4.13 RoomChangingSystem . 56
3.4.14 AISystem . 57

3.5 Status Effects . 58
3.5.1 Effect . 59
3.5.2 TimeAttribute . 61
3.5.3 OneOff . 62
3.5.4 TimedInterval . 62
3.5.5 Duration . 63
3.5.6 Multiplier . 64

3.6 Movement Processes . 65
3.6.1 Action . 65
3.6.2 MovementDirection . 66
3.6.3 MovementDirection Case Classes 66

3.7 CollisionObjects . 67
3.7.1 QuadTree . 67
3.7.2 Rectangle . 69

3.8 Factories . 70
3.8.1 ClassFactory . 71
3.8.2 ItemFactory . 72
3.8.3 QuestFactory . 73

3

3.8.4 GraphFactory . 74
3.8.5 EntityFactory . 75

4 Network System 76
4.1 NetworkMessageQueue . 77
4.2 NetworkMessageInterpreter . 77
4.3 NetworkMessageProcessor . 80
4.4 SockoServer . 82
4.5 AuthorizationProcessor . 82

5 AyaiWebApplication 83
5.1 Overview . 83
5.2 Login Page . 83
5.3 Character Creation . 84
5.4 Character Selection . 85
5.5 Changing Settings . 86

6 AyaiWorld Editor 87
6.1 Searching . 87
6.2 Creating and Editing a New Entry . 88

7 GameClient 89
7.1 Overview . 89
7.2 Graphics . 91

7.2.1 Display . 92
7.2.2 UIElement . 92
7.2.3 UnitFrame . 93
7.2.4 Chat . 93
7.2.5 Inventory . 94
7.2.6 QuestLog . 95
7.2.7 Quest . 95
7.2.8 PeopleList . 96
7.2.9 SettingsMenu . 96

7.3 Game . 98
7.3.1 Ayai . 99
7.3.2 GameStateInterface . 99
7.3.3 InputHandler . 100

7.4 Net . 102
7.4.1 Connection . 102
7.4.2 MessageReceiver . 103

8 Database Design 104
9 TraceabilityMatrix 106
Glossary 106

4

1 Introduction
1.1 Purpose
This document specifies the entire software architecture and design for the Ayai
MMORPGgameand framework. Thedesigndecisionsdirectly relate to the func-
tionality, performance, constraints, attributes, and interfaces of the system. Ayai
is a massively multiplayer online game that allows developers to implement re-
search level AI and test its functionality with a potential base of approximately
20 players. Also provided is an open source framework that eases development
of 2Dweb-basedMMORPGS. In order to achieve these goals, the framework fo-
cuses on scalability, security, accessibility, and flexibility.

1.2 Scope
This document describes the software architecture and design for the initial re-
lease ofAyai, as described in theAyai SoftwareRequirementsDocument. The in-
tended audience of this document exclusively includes the designers, developer,
testers, and open-source developers whomay use this framework.

1.3 Context Diagram
The context diagram shown in Figure 1 shows how themajor components of the
Ayai system fit into context with other components.

Figure 1: Context Diagram

5

The web server serves the Ayai frontend as a static web page. The autho-
rization server handles authentication requests. Ayai’s backendusesWebSocket
connections to receive messages from the browser and return relevant game
state and events.

2 Architecture

Figure 2: Architecture Diagram

2.1 Overview
The architecture behind Ayai is a collection of distinct, loosely coupled systems
that divide responsibilities into appropriate groups and categories. The Ayai ar-
chitecture also takes advantage of the actor model of concurrency in order to
process the heaviest tasks in a distributed and concurrent manner. Notable por-
tions of the system include theweb serverwhich provides a copy of the frontend
for each player, the collection of servers that handle various authorization and
database operations, and the distributed systems of supervisors and actors that
interpret and process commands from the user, process changes to the game
state, and returns updated data back to the user.

6

2.2 Servers
2.2.1 Web Server
The frontend of the Ayai project is a website comprising of static HTML5 con-
tent. Theweb servernginxhas the taskof receiving allHTTP/HTTPS/WebSocket
connections from the user. nginx was chosen due to its static page serving per-
formanceandcapabilities and reverseproxy features. When theuserfirst browses
to the Ayai website, nginx returns a static copy of the website. However, if the
user has an authentication request or is sending a game command, nginx proxys
the request to the appropriate server

2.2.2 Authorization Server
A simple authorization server provides authentication for the Ayai system. As
WebSockets do not natively support authentication, HTTPS is used in tandem
withWebSockets in order toprovideuser security andauthorization. Users send
their credentials over HTTPS using the Basic Access Authentication mechanism
and, if validated, receives a temporary token to validate their WebSocket con-
nection.

2.2.3 Socko Server
TheWebSocket server (createdusing theSocko library) acceptsWebSocket con-
nections forwarded by nginx and expects them to be in the form of a game re-
lated command (move, attack, etc.). The Socko server then forwards these net-
work messages to a NetworkMessageInterpreterSupervisor, in preparation to
be interpreted and then queued for processing.

2.2.4 Database
Ayai employs a lightweightflat-file JavaDatabaseengine calledH2. TheDatabase
storesuser credentials andvariousportionsofdynamic gamestate, suchasmaps,
inventories, character skills, locations, and experience. Various systems of the
game store dynamic portions of the game state to the database at an infrequent
rate (approximately once per 10 seconds). The entity factories retrieve this in-
formation when a character logs in.

2.3 NetworkMessage Interpretation/Processing
TheNetworkSystemSection (section 4) describes themechanics of theNetwork
Message system in further detail. The Socko server receives network messages
that need to be interpreted for meaning and content before being processed.
The NetworkMessageInterpreterSupervisor has a thread pool of NetworkMes-
sageInterpreters, each of which understands a message received and places a

7

game command into the NetworkMessageQueue. At each game tick, the Net-
workMessageQueue is cleared and given to the NetworkMessageProcessorSu-
pervisor for processing.

2.4 Game State
The game state in Ayai is represented as an Entity Component System, which
stores, manages, and processes game state. Worlds separate players by in-game
locality and stores data as entities with components.

2.5 Systems
Systems are then in charge of processing changes and game logic, applying these
changes to the relevant components. Systems are placed on tiers, so that higher
tiers must complete before a lower tier starts to process.

2.5.1 AI System
The AI System processes new information about the world andmakes appropri-
ate decisions related to the artificial intelligence of entities and the game itself.
This includes low level decisionmaking, such asmovement and attacking for spe-
cific non player characters, to high level decision making, such as the creation of
quests, enemies, and other necessary game entities.

2.5.2 NetworkSystem
At the lowest tier exists the NetworkSystem, which serializes the game state,
calculatesmessages to return back to players, and sendsmessages back over the
WebSocket connection to the frontend.

3 Detailed Design
3.1 ECSGame Loop
This section defines the ECS system and themain backend driver (called a Game
Loop). These properties go into detail about theworkings of themain loop of the
system. The ECS system is a small system that consists of three main properties
which are the Systems, Entities, and Components.

8

Figure 3: engine diagram

9

3.1.1 World

Figure 4: World Class Diagram
AWorld holds all entities, systems and processes and filters entity information
Attributes

10

Name Type Description
entities ArrayBuffer[Entity] Holds all known entities in a

list
systems ArrayBuffer[System] Holds all systems added to

the world
deleted ArrayBuffer[Entity] Holds all entities that are

primed for deletion, but can-
not be removed until after
system process

added ArrayBuffer[Entity] Holds all entities that are
primed for addition to enti-
ties, but cannot be added to
main list until systemprocess
is finished.

Operations
Operation: getEntityByTag(tag : String) : Option[String]

Input : Tag - the unique tag of the entity
Output : Returns an option for an entity
Description : Finds an entity with a given tag and returns option on it.

Operation: getEntityByComponents(componentTypes : T*) : List[Entity]
Input : ComponentTypes : T - a list of types of component classes
Output : Returns a list of entities
Description : Takes a list of component types and returns a list of entities which
have all the given components
Operation: getEntitiesWithExclusions(include : List(T), exclude : List(T)) :

List[Entity]
Input : Include : List(T) - a list of types of component classes youwant to find
exclude : List(T) - a list of types youwant to exclude from the find
Output : Returns a list of entities
Description : Takes a list of component types you want to search for in entities
and a list of component types you do notwant an Entity to have and returns a list
of entities whichmatch.
Operation: getGroup(group : String) : ArrayBuffer[String]

Input : Group : String - a group name
Output : List of Entities
Description : Returns list of entities that arematched to group
Operation: registerEntityToGroup(entity : Entity, group : String) : Array-

Buffer[Entity]
Input : entity : Entity - an entity to add

11

group : String - group to add to
Output : The group you are adding to
Description : Adds an entity to a group and returns that group
Operation: addEntity(e : Entity, second : Boolean)

Input : e : Entity - entity to add to world
second : Boolean - did this get called from entity itself
Output : None
Description : Add entity to world
Operation: createEntity(tag : String) : Entity

Input : tag : String - tag which to identify item
Output : Entity which is created
Description : Create and return a new entity, not added to world
Operation: addSystem(system : System)

Input : system : System - The system to add to world and processing cycle
Output : None
Description : Adds systems to the world systems list and is included in next pro-
cess cycle
Operation: process()

Input : None
Output : None
Description : Runs process() on all systems that are included in the world

3.1.2 Entity

Figure 5: Entity Class Diagram

12

An Entity holds all data (Components) needed to be processed by a system for a
specific function (characters, items, enemies).
Attributes
Name Type Description
tag String Unique tag to look for entity
world World World which Entity belongs

to
alive Boolean Is an entity alive or dead
Components ArrayBuffer[Component] List of components
uuid String Unique id for character
Operations
Operation: getComponent(componentType : T) : Option[Component]

Input : ComponentType : T - classOf component to find
Output : Returns an option for the component
Description : Searches for a component in the list, and returns an option on it

Operation: removeComponent(componentType : T)
Input : ComponentTypes : T - classOf Component to find
Output : None
Description : Takes a component type and removes it from list of components
Operation: kill()

Input : None
Output : None
Description : Removes entity from theworld it is apart of.

13

3.1.3 System

Figure 6: SystemClass Diagram
Systems are the framework’s way of processing andmanipulating data. Overrid-
ing the process function allows for the system to dowork on the list of entities it
uses.
Attributes
Name Type Description
world World Theworld it is a member of
Operations
Operation: process(delta : Int)

Input : delta : Int - The time difference from the last frame
Output : None
Description : Abstract defined function needing to be overwritten

14

3.1.4 EntityProcessingSystem

Figure 7: SystemClass Diagram
An EntityProcessingSystem inherits from System and allows for users to manip-
ulate one Entity at a time. Also includes list inputs to exclude and include certain
components.
Attributes
Name Type Description
include List[Component] List of components which

are used for filtering in the
needed components

exclude List[Component] List of components which
are used for filtering out un-
needed components

Operations
Operation: process(delta : Int)

Input : delta : Int - The time difference from the last frame
Output : None
Description : Calls processEntity and filters the list of entities

Operation: processEntity(entity : Entity, delta : Int)
Input : delta : Int - The time difference from the last frame
entity : Entity - the filtered entity needed for processing Output : None
Description : Calls entities one by one and processes the information based on
implementation

15

3.1.5 TimedSystem

Figure 8: Timed SystemClass Diagram
A TimedSystem only runs after the amount of time given to it. Used for process-
ing that needs to be done on a timed interval.
Attributes
Name Type Description
milliSeconds Int Amount of time that must

pass before system pro-
cesses again

start Int The time when the system
started counting for next run

Operations
Operation: process(delta : Int)

Input : delta : Int - The time difference from the last frame
Output : None
Description : Calls processTime and checks to see if enough time has passed

Operation: processTime(delta : Int)
Input : delta : Int - The time difference from the last frame
entity : Entity - the filtered entity needed for processing Output : None
Description : Is called after certain amount of time given bymilliseconds.

16

3.1.6 IntervalSystem

Figure 9: SystemClass Diagram
A IntervalSystem only runs after a certain amount of frames has passed. Used
for processing that needs to be done on a frame interval.
Attributes
Name Type Description
count Int The amount of frames that

must pass before the system
processes again

counter Int The current amount of
frames that have been
passed since the last run

Operations
Operation: process(delta : Int)

Input : delta : Int - The time difference from the last frame
Output : None
Description : Calls processInterval andchecks to see if enough frameshavepassed

Operation: processInterval(delta : Int)
Input : delta : Int - The time difference from the last frame
entity : Entity - the filtered entity needed for processing Output : None
Description : Is called after certain amount of frames have been passed.

17

3.1.7 Component

Figure 10: Component Class Diagram
Component is an empty class, but is used as an identifier for grouping data to-
gether.

3.1.8 Game Loop

Figure 11: The Game Loop

18

GameLoop.scala is the main driver of the Ayai framework. It loads in all Con-
stants, maps, and compiles the rooms together, and sets all worlds with the ap-
propriate systems and information.
Attributes
Name Type Description
roomHash HashMap[Long, Entity] A map of the roomId to the

RoomEntity and its Map in-
formation components

log Logger A logger which allows for
printing to a log file

running Boolean Is themain loop still running
Operations
Operation: main

Input : None
Output : None
Description : Sets up theworlds needed to run the game, sets up all network con-
nections, and loads all rooms from files.

3.2 Components
Components are aspects of entites. An entity is comprised of one or more com-
ponentswhich specify behaviors that the entitymight have. For example aplayer
entity would be comprised of a position, bounds, health, inventory, mana, and
character component.

19

Figure 12: All components inheriting from component

20

3.2.1 Position

Figure 13: Position Class Diagram
Name Type Description
x Int The position on the x-

coordinate plane of the
entity

y Int The position on the y-
coordinate plane of the
entity

3.2.2 Actionable

Figure 14: Actionable Class Diagram
Name Type Description
active Boolean Is the component in an active

state
action Action The action that the compo-

nent is doing

21

3.2.3 Attack

Figure 15: Attack Class Diagram
Name Type Description
initiator Int Who initiated the attack
victims ArrayBuffer[Entity] List of entities of who the at-

tack has collided with

3.2.4 Bounds

Figure 16: Bounds Class Diagram
Name Type Description
width Int The totalwidth of the bound-

ing box
height Int The total height of the

bounding box

22

3.2.5 Character

Figure 17: Character Class Diagram
Name Type Description
id String The unique string of the

character
name String The name of the character

3.2.6 Frame

Figure 18: Frame Class Diagram
Name Type Description
framesActive Int The amount of frames that

must be passed to run again
frameCounts Int The current amount of

frames that have passed

23

3.2.7 Health

Figure 19: Health Class Diagram
Name Type Description
currentHealth Int The current value of health
maximumHealth Int The maximum amount of

health value
currentModifiers ArrayBuffer[Effect] The current effects that are

effecting the currentHealth
value

maxModifiers ArrayBuffer[Effect] The current effects that
are effecting the maxi-
mumHealth value

currentCached Int The value of currentHealth
with all effects calculated

maxCached Int The value of maxi-
mumHealth with all effects
calculated

isAlive Boolean Is current health less than
zero

Operation: addDamage(damage: Float)
Input : damage: Float - theamountof damage to subtract fromthecurrentHealth
Output : None
Description : Calculate damage to subtract from currentHealth

24

Operation: refill()
Input : None
Output : None
Description : Sets the currentHealth tomaximumHealth
Operation: updateCachedValue()

Input : None
Output : None
Description : Updates the cachedvaluesofbothmaximumHealthandcurrentHealth
Operation: updateMaxValue()

Input : None
Output : None
Description : Updates the cached values of maximumHealth by processing the
effects on the component
Operation: updateCurrentValue()

Input : None
Output : None
Description : Updates the cached values of currentHealth by processing the ef-
fects on the component
Operation: getCurrentValue()

Input : None
Output : Returns the cached value for currentHealth
Description : Returns the cached value for currentHealth
Operation: getMaxValue()

Input : None
Output : Returns the cached value for maximumHealth
Description : Returns the cached value for maximumHealth

25

3.2.8 Inventory

Figure 20: Inventory Class Diagram
Name Type Description
inventory ArrayBuffer[Item] A list of items
Operation: addItem(itemToAdd: Item)

Input : Item to add to inventory list
Output : None
Description : Adds Item to inventory
Operation: removeItem(itemToRemove: Item)

Input : Item to remove from inventory list
Output : None
Description : Removes Item from inventory
Operation: hasItem(itemToCheck: Item): Boolean

Input : Item to check in inventory list
Output : Returns if item exists in list
Description : Checks to see if given item exists in list
Operation: getItem(itemLocation: Int): Item

Input : The slot that the item exists in
Output : Returns the item
Description : Retrieves item from list
Operation: totalWeight(): Int

Input : None
Output : Returns total weight of inventory
Description : Returns the weight of all items in inventory

26

3.2.9 Velocity

Figure 21: Velocity Class Diagram
Name Type Description
xSpeed Int Speed in the xDirection
ySpeed Int Speed of the y direction
modifiers ArrayBuffer[Effect] The current effects that are

effecting both speed values
Operation: addEffect(effect: Effect)

Input : effect: Effect - the effect to add
Output : None
Description : Adds effect tomodifiers
Operation: updateCachedValue()

Input : None
Output : None
Description : Updates the cached value

3.2.10 Time

Figure 22: Time Class Diagram

27

Name Type Description
msActive Int The amount of msSeconds

until the component is acti-
vated

startTime Long The time of last frame ending

3.2.11 Mana

Figure 23: Mana Class Diagram
Name Type Description
currentMana Int The current value of health
maximumMana Int The maximum amount of

health value
currentModifiers ArrayBuffer[Effect] The current effects that are

effecting the currentMana
value

maxModifiers ArrayBuffer[Effect] The current effects that are
effecting the maximumMana
value

currentCached Int The value of currentMana
with all effects calculated

maxCached Int The value of maximumMana
with all effects calculated

isAlive Boolean Is current health less than
zero

28

Operation: addDamage(damage: Float)
Input : damage: Float - the amount of damage to subtract from the currentMana
Output : None
Description : Calculate damage to subtract from currentMana
Operation: updateCachedValue()

Input : None
Output : None
Description : Updates the cached values of both maximumMana and current-
Mana
Operation: updateMaxValue()

Input : None
Output : None
Description : Updates the cached values ofmaximumMana by processing the ef-
fects on the component
Operation: updateCurrentValue()

Input : None
Output : None
Description : Updates the cached values of currentMana by processing the ef-
fects on the component
Operation: getCurrentValue()

Input : None
Output : Returns the cached value for currentMana
Description : Returns the cached value for currentMana
Operation: getMaxValue()

Input : None
Output : Returns the cached value for maximumMana
Description : Returns the cached value for maximumMana
Operation: addEffect(effect: Effect)

Input : effect: Effect - the effect to add
Output : None
Description : Adds effect tomodifiers (modifier depends on type in effectType)

29

3.2.12 Stats

Figure 24: Stats Class Diagram
Name Type Description
stats ArrayBuffer[Stat] List of stats
Operation: updateCachedValue()

Input : None
Output : None
Description : Updates the cached values of all stored stats
Operation: getValueByAttribute(attributeType: String): Int

Input : Based on attribute type return the value
Output : Returns the current cached value of the given attribute
Description : Returns the current cached value of the given attribute

3.2.13 Stat

Figure 25: Stat Class Diagram

30

Name Type Description
attributeType String The string of an attribute
magnitude Int Current value of attribute
cachedValue Int Current cached value of at-

tribute
modifiers ArrayBuffer[Effect] The current effects that are

effecting the stat
Operation: updateCachedValue()

Input : None
Output : None
Description : Updates the cached value of the stat by processing the effects on
the component
Operation: addEffect(effect: Effect)

Input : effect: Effect - the effect to add
Output : None
Description : Adds effect tomodifiers (modifier depends on type in effectType)

3.2.14 Transport

Figure 26: Transport Class Diagram
Name Type Description
toRoom Room Specifies the room to which

to transport
startPosition Position Specifies the position in to-

Room

31

3.2.15 NetworkingActor

Figure 27: Networking Actor Class Diagram
Name Type Description
actor ActorSelection Theconnection to the receiv-

ing player

3.2.16 Respawn

Figure 28: Respawn Class Diagram
Name Type Description
time Int Defaulted to 1500 ms, and

is the amount of time until
player can respawn

delta Long The time that a player died

32

3.2.17 TileMap

Figure 29: TileMap Class Diagram
Name Type Description
array Array[Array[Tile]] 2 Dimensional Array of tiles
listOfTransport List[TransportInfo] A list of transport locations

on amap
tileSets TileSets A list of tileset files
file String the JSONfile that represents

themap
width Int the width of tiles of map
height Int the height of tiles of map
tileSize Int number of pixels of an indiv-

dual tile
Operations
Operation: getMaximumHeight() : Int

Input : None
Output : Number of pixels in height
Description : Returns the height multiplied by the tileSize to get the number of
pixels in the y-axis
Operation: getMaximumWidth() : Int

Input : None
Output : Number of pixels in width
Description : Returns the width multiplied by the tileSize to get the number of
pixels in the x-axis

33

Operation: getTileByPosition(position : Position) : Tile
Input : position : Position - the position to convert to tile
Output : The tile referenced by position
Description : Returns the tile that is in the area of the given position
Operation: valueToTile(value : Int) : Int

Input : a pixel location
Output : the value divided by tileSize
Description : Returns the value given divided by tileSize
Operation: isPositionInBounds(position : Position) : Position

Input : position : Position - the position to check
Output : returns new position, if old value was not valid
Description : Given a position, checks to see if tile location is not valid, and re-
turns a valid position
Operation: onTileCollision(position : Position) : Boolean

Input : position : Position - the position to check
Output : returns true/false if position is on unwalkable tile
Description : Given a position, checks to see if tile location is valid
Operation: checkIfTransport(characterPosition : Position) : Transport

Input : characterPosition : Position - the position to check
Output : Returns a transport object if tile is a transport tile
Description : Given a position, checks to see if tile location is a transportable tile
and returns the information

3.2.18 ItemUse

Figure 30: ItemUse Class Diagram
The ItemUse component is acted upon by the ItemSystem and is used to convey
information about when items are used by a player.

34

Name Type Description
initiator Entity What entity used the item
item Item the item that was used
target Entity What entity was targeted by

the initiator
Operations
Operation: getItemEffects() : ArrayBuffer[Effect

Input : None
Output : The list of effects on an item
Description : Returns the list of effects that an item has on them (would be pro-
cessed by the ItemSystem)

3.2.19 Experience

Figure 31: Experience Class Diagram
Experience is gained from when players complete tasks or kill enemies. When a
player gains enough experience then they can level up and adds more power to
their stats.Name Type Description

baseExperience Long The total amount of experi-
ence

level Int Current level of entity
modifiers ArrayBuffer[Effect] The current effects that are

effecting baseExperience
Operation: updateCachedValue()

Input : None

35

Output : None
Description : Updates the cached value of experience
Operation: getValue(): Int

Input : None
Output : Returns the cached value for experience
Description : Returns the cached value for experience
Operation: levelUp(experienceThreshold: Long): Boolean

Input : The threshold for the next level
Output : Returns if the player has leveledUp
Description : Checks to see if the players baseExperience is higher than the ex-
perience threshold of the next level
Operation: addEffect(effect: Effect)

Input : effect: Effect - the effect to add
Output : None
Description : Adds effect tomodifiers (modifier depends on type in effectType)

3.2.20 Cooldown

Figure 32: Cooldown Class Diagram
Keeps a time to see if a player can perform another action. If the cooldown is
active then a player cannot do an action such as attack or use an item. Is acted up
by the cooldown system.

Name Type Description
startTime Long The start time when the

cooldownwas set
length Long Length in seconds for how

long cooldownwill last
Operation: isReady(): Boolean

Input : None
Output : Returns if enough time has passed

36

Description : Returns to see if enough time has passed and cooldown is down

3.2.21 Quest

Figure 33: Experience Class Diagram
Information about quests and objectives to complete in the game (is not a com-
ponent, but is usedwith quest bag)

Name Type Description
id Int The quest id
title String Title of the quest
description String The description and details

of the quest
recommendLevel Int The recommended level that

a player should be to do the
quest

objectives List[KillObjective] The objectives to complete
the quest

Operation: isReady(): Boolean
Input : None
Output : Returns if enough time has passed
Description : Returns to see if enough time has passed and cooldown is down

37

3.2.22 QuestBag

Figure 34: QuestBag Class Diagram
Is a component that holds information about a players held quests

Name Type Description
quests ArrayBuffer[Quest] An entities held quests
Operation: addQuest(questToAdd: Quest)

Input : The quest to add to quests list
Output : None
Description : Adds quest to quests list

3.2.23 Equipment

Figure 35: Equipment Class Diagram
The players equipment iswhat allows them to greatly increase their stats by pro-
viding the ability to equip weapons and armor.

Name Type Description
equipmentMap HashMap[String, Item] Maps an item slot to an item
Operation: equipItem(item: Item): Boolean

Input : The item to equip

38

Output : Returns if the equip was successful
Description : Tries to equip an item based on the items information, will return
false if failed
Operation: equipItem(item: Item, slot: String): Boolean

Input : The item to equip and the slot to equip to
Output : Returns if the equip was successful
Description : Tries to equip an item based on the slot given, will return false if
failed
Operation: equipItem(equipmentType: String): Item

Input : The slot to unequip from
Output : Returns the item that was unequiped
Description : Tries tounequip an itembasedon the slot given,will return the item
that was in the slot

39

3.3 Items
Items are used throughout the game as potentially quest items, weapons, armor,
or consumables (potions, mana potions, and stat increases or descreases)

Figure 36: Items

40

3.3.1 Item

Figure 37: ItemClass Diagram
Item is a class that holds all information about an item including its effects and
descriptions. When an item is used it can either be equiped by a player (based on
item type) or be used by a player to perform an action.
Attributes
Name Type Description
id Long the item id
name String The name of the item
value Int The value that the item

will use when consumed or
equipped

weight Double Theweight of the item
itemType ItemType Additional information

about an item such as
weapon or armor.

effects ArrayBuffer[Effect] The effects that an item will
do when used or equipped

41

3.3.2 ItemType

Figure 38: ItemType Class Diagram
ItemType is an abstract class that can be extended to hold additional information
for items. Also contains asJson function export information from needed class.

3.3.3 Weapon

Figure 39: Weapon Class Diagram
Aweapon can be equipped in the weapon1 or weapon2 equipment slots. Raises
a players offensive stats.
Attributes

42

Name Type Description
range Int the number of pixels the at-

tack can be extended
damage Int The amount of damage the

attack will do
damageType String The type of damage the

weapon will inflict (only
physical)

itemType String The slot that it will be
equipped onto (weapon1 or
weapon2)

3.3.4 Weapon

Figure 40: Armor Class Diagram
Anarmor canbeequipped in thehead, torso, legs, or feet equipment slots. Raises
a players defensive stats.
Attributes
Name Type Description
slot String The slot thatwill beequipped

to
damage Int The amount of protection

that will raise the defense
stat

itemType String The slot that it will be
equipped to

43

3.4 Systems
Systems, as described in Section 3.1.3, are used tomanipulate component data.

Figure 41: Systems

44

3.4.1 MovementSystem

Figure 42: MovementSystemClass Diagram
Themovement system inherits the EntityProcessingSystem and requires an En-
tity to have the Position, Velocity, Actionable, and Character components.
Attributes
Name Type Description
roomHash HashMap[Long, Entity] A map of the roomId to the

RoomEntity and its Map in-
formation components

log Logger A logger which allows for
printing to a log file

Operations
Operation: processEntity(e : Entity, delta : Int)

Input : e : Entity - entity which posseses the necessary components
delta : Int - time difference from last frame
Output : None
Description : Checks to see if the player is moving, then retrieves the room the
player is in, and then checks to see if the position the player is in is valid and then
attaches transport component to entity.

45

3.4.2 CollisionSystem

Figure 43: Collision SystemClass Diagram
The collision system inherits from the normal System class and goes through
each ROOM to gather its entities and uses QuadTrees to find entities which it
may interactwith. Afterfinding eligible items it does collision detection anddoes
the required actions (whether if an attack is colliding, or two players touching).
Attributes
Name Type Description
log Logger A logger which allows for

printing to a log file
Operations
Operation: process(delta : Int)

Input : delta : Int - time difference from last frame
Output : None
Description : Puts all room entities in quadtree, then retrieves each section of
quadtree and runs collision detection.

Operation: handleCollision(entityA : Entity, entityB: Entity)
Input : entityA : Entity - first entity for collision checking
entityB : Entity - second entity for collision checking
Output : None
Description : Checks to see if the two entities overlap

Operation: handleCollision(attacker : Attack, attackee : Health)
Input : attacker : Attack - attack component which calculates damage done to
attackees health

46

attackee : Health - health of victim, which damage is reduced from
Output : None
Description : Handles damage calculation of colliding attack and character enti-
ties

Operation: valueInRange(value : Int, min : Int, max :Int) : Boolean
Input : value : Int - value to see if betweenmin andmax
min : Int - Bounds in which valuemust be greater than
max :Int - Bounds in which valuemust be less
Output : Detects if given components are in range of each other
Description : Checks to see if value given is between themin andmax

Operation: excludeList(entities : List[Entity], exclusionList : List[T]) : List[Entity]
Input : entities : List[Entity] - list of entities
exclusionList : List[T] - list of components to exclude
Output : Returns the list of entities that do not contain components from exclu-
sionList
Description : Filters out exclusionList from list of entities

Operation: hasExclusion(entity : Entity, exclusionList : List[T]) : Boolean
Input : entity : Entity - entity to check
exclusionList : List[T] - list of components to exclude
Output : Returns if the entity contains any of the excluded components
Description : Checks entity components to see if it contains any components
from exclusion list

47

3.4.3 HealthSystem

Figure 44: HealthSystemClass Diagram
Health System inherits from EntityProcessingSystem and checks Entity health
to see if it should be killed and removed from game.
Operations
Operation: processEntity(entity : Entity, delta : Int)

Input : entity : Entity - entity to process delta : Int - time difference from last
frame
Output : None
Description : Processes entity health

3.4.4 RespawningSystem

Figure 45: Respawning SystemClass Diagram
RespawningSystem inherits from EntityProcessingSystem and checks Entities
who are dead and respawns the characters.
Operations

48

Operation: processEntity(entity : Entity, delta : Int)
Input : entity : Entity - entity to process delta : Int - time difference from last
frame
Output : None
Description : Processes entity respawn

3.4.5 FrameExpirationSystem

Figure 46: FrameExpirationSystemClass Diagram
FrameExpirationSystem inherits from EntityProcessingSystem and checks Enti-
ties that contain a Frame component and check to see if action is needed.
Operations
Operation: processEntity(entity : Entity, delta : Int)

Input : entity : Entity - entity to process delta : Int - time difference from last
frame
Output : None
Description : Processes entity and checks frame component

49

3.4.6 NetworkingSystem

Figure 47: NetworkingSystemClass Diagram
The networking system inherits the TimedSystem and after a certain amount of
time updates all game players.
Attributes
Name Type Description
roomHash HashMap[Long, Entity] A map of the roomId to the

RoomEntity and its Map in-
formation components

log Logger A logger which allows for
printing to a log file

timeout Int Time that a message has to
compile

Operations
Operation: processTime(delta : Int)

Input : delta : Int - time difference from last frame
Output : None
Description : Processes compiling of messages and sending of messages to play-
ers

50

3.4.7 NPCRespawningSystem

Figure 48: NPCRespawningSystemClass Diagram
The NPCRespawningSystem is responsible for restoring any NPCs that need to
be respawned andwhich are designated as being able to respawn.
Attributes
Name Type Description
actorSystem ActorSystem Holds actors in game that al-

lows system to query for in-
formation

Operations
Operation: processEntity(delta : Int)

Input : delta : Int - time difference from last frame
Output : None
Description : Processes compiling of messages and sending of messages to play-
ers

51

3.4.8 LevelingSystem

Figure 49: LevelingSystemClass Diagram
The LevelingSystem is meant to calculate a players experience and determine if
levelup is needed.
Attributes
Name Type Description
actorSystem ActorSystem Holds actors in game that al-

lows system to query for in-
formation

Operations
Operation: processEntity(delta : Int)

Input : delta : Int - time difference from last frame
Output : None
Description : Processes compiling of messages and sending of messages to play-
ers

3.4.9 StatusEffectSystem

Figure 50: StatusEffectSystemClass Diagram

52

The StatusEffectSystem is meant to calculate all status effects on a character
per cycle and determine if the effects shouls be removed and calculate all values
needed throughout the cycle.
Attributes
Name Type Description
actorSystem ActorSystem Holds actors in game that al-

lows system to query for in-
formation

Operations
Operation: processEntity(delta : Int)

Input : delta : Int - time difference from last frame
Output : None
Description : Processes compiling of messages and sending of messages to play-
ers

3.4.10 CooldownSystem

Figure 51: CooldownSystemClass Diagram
The cooldown systemworkswith the cooldown component to stop players from
attacking or using items too quickly.
Attributes
Name Type Description
actorSystem ActorSystem Holds actors in game that al-

lows system to query for in-
formation

Operations
Operation: processEntity(delta : Int)

Input : delta : Int - time difference from last frame
Output : None
Description : Processes compiling of messages and sending of messages to play-
ers

53

3.4.11 ItemSystem

Figure 52: ItemSystemClass Diagram
The ItemSystem checks to see if any items need to be processed on characters
Attributes
Name Type Description
actorSystem ActorSystem Holds actors in game that al-

lows system to query for in-
formation

Operations
Operation: processEntity(delta : Int)

Input : delta : Int - time difference from last frame
Output : None
Description : Processes compiling of messages and sending of messages to play-
ers

54

3.4.12 AttackSystem

Figure 53: AttackSystemClass Diagram
The AttackSystem processes attackmessages from the processorsAttributes

Name Type Description
actorSystem ActorSystem Holds actors in game that al-

lows system to query for in-
formation

Operations
Operation: processEntity(delta : Int)

Input : delta : Int - time difference from last frame
Output : None
Description : Processes compiling of messages and sending of messages to play-
ers

Operation: getWeaponStat(entityGet: Entity)
Input : entity to get stat off of
Output : Outputs the total attack damage
Description : Processes all attack stats that a player has on them and compiles
them together

Operation: getArmorStat(entityGet: Entity)
Input : entity to get stats off of
Output : Outputs the total defensive value
Description : Processes all defensive stats that a player has on them and com-
piles them together

55

Operation: getDamage(initiator: Entity, victim: Entity)
Input : initiator - entity who initiated attack
victim - personwhowas attackedOutput : None
Description : Processes both defensive and attack stats that a victim and initia-
tor have and compiles damage to receive on victim.

3.4.13 RoomChangingSystem

Figure 54: RoomChangingSystemClass Diagram
The RoomChangingSystem inherits the EntityProcessingSystem and checks to
see that if an Entity contains a "Transport" component and changes the process-
ing entities room.
Attributes
Name Type Description
roomHash HashMap[Long, Entity] A map of the roomId to the

RoomEntity and its Map in-
formation components

log Logger A logger which allows for
printing to a log file

Operations
Operation: processEntity(entity : Entity, delta : Int)

Input : entity : Int - entity to process, delta : Int - time difference from last frame
Output : None
Description : Processes and sends all player messages

56

3.4.14 AISystem

Figure 55: AISystemClass Diagram
The AI system inherits from the normal System and calculates all artificial intel-
ligence based decisions.
Operations
Operation: process(delta : Int)

Input : delta : Int - time difference from last frame
Output : None
Description : Calculates AI commands

Operation: getScore(current : Position, goal : Position)
Input : current : Position - current position of AI agent
Input : goal : Position - current position of target
Output : score : Int
Description : Calculates score based on distance from target

findClosest(entity: Entity, possibles: List[Entity])
Input : entity : Entity - Starting entity
Input : possibles : List[Entity]
Output : entity : Entity
Description : Returns closed entity to starting entity

findDirection(entity: Entity, target: Entity)
Input : entity : Entity - Starting entity
Input : target : Entity - Target entity
Output : MoveDirection
Description : ReturnsMoveDirection for entity tomove towards target

57

3.5 Status Effects

Figure 56: Ayai Status Effect

58

The status effect system comprises of an Effect class that takes in a Multiplier,
EffectType string, and a Time Attribute. It can be used with 5 main components
(Health, Mana, Stats, Experience, and Velocity).

3.5.1 Effect

Figure 57: Effect Class Diagram
The Effect class holds all information about an effect. Effects are used to change
statistics for a temporary time by being attached to an weapon or used on an
item.
Attributes

59

Name Type Description
name String Name of the effect
description String Description of the effect
effectType EffectType Information about the effect
value Int Value that effect will use
attribute TimeAttribute Details of how often effect

will run
isRelative Boolean Is the effect adding to the

current value of the effected
type (if false, the value will
change to an absolute value)

isValueRelative Boolean is computed value deter-
mined by the current value
of the type

effectiveValue Int The compiled value of the ef-
fect to use

Operations
Operation: process(effectValue: Int = 0)

Input : effectValue: Int - is defaulted to zero, but if the process is determined by
an outside value (such as current health) then that value needs to be given
Output : Returns the computed value
Description : Processes and updates the effective value for the cycle or effect

Operation: updateValue(value: Int)
Input : value: Int - the outside value used to process
Output : None
Description : Updates effective value

Operation: isValid()
Input : None
Output : If effect is still valid
Description : Checks to see if effect is still valid by testing time attribute

60

3.5.2 TimeAttribute

Figure 58: TimeAttribute Class Diagram
The TimeAttribute class is an abstract class that is used to determine how long
and howmuch an effect needs to run.
Operations
Operation: process()

Input : None
Output : Returns if the value has been changed
Description : Processes the updated values of the time

Operation: isReady()
Input : None
Output : Returns if effect is ready to run
Description : Returns if the effect is ready to run

Operation: initialize()
Input : None
Output : None
Description : Sets all values to initial settings

Operation: isValid()
Input : None
Output : Boolean
Description : Returns if the effect should be removed from the game or charac-
ter

61

3.5.3 OneOff

Figure 59: OneOff Class Diagram
The OneOff class is extended from the TimeAttribute and is meant to run the
effect immediately and only once. Once it has been run isValid and isReady will
be true and false, respectively.
Attributes
Name Type Description
timesUsed Int How many times has the ef-

fect been run

3.5.4 TimedInterval

Figure 60: TimedInterval Class Diagram
The TimedInterval class is extended from the TimeAttribute and is meant to be
run at a set interval for a set amount of time.
Attributes

62

Name Type Description
timesProcessed Int How many times has the ef-

fect been run
startTime Long When was the effect initial-

ized
currentTime Long What is the currentTime
endTime Long Whenwill the effect end
interval Int How many seconds should

the effect be processed (in
seconds)

maxTime Long How long should effect last
for (in seconds)

3.5.5 Duration

Figure 61: Duration Class Diagram
TheDuration class is extended from theTimeAttribute and ismeant to be run for
the length given. The effect is processed is meant to be run once, but is removed
once the time is up (meant for temporary stat increases)
Attributes
Name Type Description
timesProcessed Int How many times has the ef-

fect been run
startTime Long When was the effect initial-

ized
currentTime Long What is the currentTime
endTime Long Whenwill the effect end
maxTime Long How long should effect last

for (in seconds)

63

3.5.6 Multiplier

Figure 62: Multiplier Class Diagram
The Multiplier class has an internal value which it will use to multiply with the
effects value to create the effects effective value. For example, if the multiplier
value is .5 and the effect wants to use current healths value, it will decrease the
value to half of what it was.
Attributes
Name Type Description
value Float The multiplier value to use

with the effect value
Operations
Operation: process(effectValue: Int = 0)

Input : effectValue: Int - the value tomultiply
Output : Returns themultiplied value
Description : Multiplies the given value by themultiplier value

64

3.6 Movement Processes

Figure 63: Action SystemDiagram
Movement in theAyai framework are based on anAction trait. These actions are
used for players and are currently only used to processMovements.
Movements consist of an X and Y direction and the process function moves

the entity in the needed direction.

3.6.1 Action

Figure 64: Action Class Diagram
The action is a trait that has a process function and an asJson function. The pro-
cess function is used to process the given entity and asJson is to print out the
state of the action.

65

3.6.2 MovementDirection

Figure 65: MoveDirection Class Diagram
The movement direction consists of an X and Y direction and the process func-
tion of MovementDirection takes the X and Y direction and multiples the users
velocity component tomove in the correct direction.

3.6.3 MovementDirection Case Classes

Figure 66: Case ClassesMoveDirections Class Diagram
There are 8 states that the movement direction is allowed to be in. These case
classes have predefined X and Y directions and override the asJson method to
print out the correct state to the user.
These are 8 case classes are defined as:
• LeftDirection has an X direction of -1 and Y direction of 0
• RightDirection has an X direction of 1 and Y direction of 0
• UpDirection has an X direction of 0 and Y direction of 1
• DownDirection has an X direction of 0 and Y direction of -1
• UpLeftDirection has an X direction of -1 and Y direction of 1
• UpRightDirection has an X direction of 1 and Y direction of 1

66

• DownLeftDirection has an X direction of -1 and Y direction of -1
• DownRightDirection has an X direction of 1 and Y direction of -1

3.7 CollisionObjects
3.7.1 QuadTree

Figure 67: QuadTree Class Diagram
Quadtrees are tree data structure that is used to find the entities that are most
likely to collide with each other. The QuadTree splits itself into four tree nodes
which themselves have four nodes. Once a certain amount of items have been
put into a node, it furthur splits itself up and divides those entities up. It allows
for users to detect entities without checking against each one and run a collision
detection algorithm on a smaller set of entities.

67

Name Type Description
level Int Depth of tree node
bounds Rectangle What bounds does this node

take care of
MAXOBJECTS Int Themaxnumberof objects in

a quadtrees
MAXLEVELS Int The max depth of the

quadtree
objects ArrayBuffer[Entity] The list of objects the list

hold
nodes ArrayBuffer[QuadTree] The nodes of a quadtree
Operations

Operation: clear()
Input : None
Output : None
Description : Clear all nodes below

Operation: split()
Input : None
Output : None
Description : Creates four nodes on current quadtree

Operation: getIndex(e : Entity) : Int
Input : e : Entity - entity to find index for
Output : Quadrant entity is in
Description : Finds the entity in the quadtree and returns quadtrant

Operation: insert(e : Entity)
Input : e : Entity - entity to insert
Output : None
Description : Inserts entity into quadtree

Operation: retrieve(e : Entity) : ArrayBuffer[Entity]
Input : e : Entity - the entity to check against
Output : ArrayBuffer of entities
Description : Using Entity, retrieves all entities in given entity quadtrant

68

3.7.2 Rectangle

Figure 68: Rectangle Class Diagram
Name Type Description
x Int Top left corner location of

rectangle (x-axis)
y Int Top left corner location of

rectangle (y-axis)
width Int Width of Rectangle
height Int Height of Rectangle

69

3.8 Factories

Figure 69: Factories
There are three factories that Ayai uses. The ItemFactory, ClassFactory, and En-
tityFactory and all are neeeded to fill in the information needed for the specific

70

type.

3.8.1 ClassFactory

Figure 70: ClassFactory Class Diagram
ClassFactory is used on bootup to create all initial classes in the game and store
them inmemory.
Operations
Operation: bootup(world : World)

Input : world : World - the world to store classes
Output : None
Description : Read all necessary input files and create Classes

Operation: buildStats(stats : Option[List(Stats)]) : Stats
Input : stats : Option[List(Stats)] - an option for returned stats
Output : Returns stats created
Description : Takes in anOption for Stats and returns the potential stats class

Operation: getClassesList(path : String) : List[AllClassValues]
Input : path : String - path to a classes file
Output : Returns a list of classes retrieved from file
Description : Takes in a path file and return all classes read in

71

3.8.2 ItemFactory

Figure 71: ItemFactory Class Diagram
ItemFactory is used on bootup to create all initial items in the game and store
them inmemory.
Operations
Operation: bootup(world : World)

Input : world : World - the world to store items
Output : None
Description : Read all necessary input files and create items

Operation: buildStats(item : AllItemValues) : Stats
Input : stats : AllItemValues - a case class with info of item
Output : Returns stats created
Description : Takes in a AllItemValues for Stats and returns the stats class

Operation: getItemsList(path : String) : List[AllItemValues]
Input : path : String - path to a classes file
Output : Returns a list of classes retrieved from file
Description : Takes in a path file for items and returns all items read in

Operation: addStats(item : Entity, stats : Stats)
Input : item : Entity - Entity to add stats to

72

stats : Stats - Stats to add to Entity
Output : None
Description : Adds given stats file to item entity

Operation: instantiateWeapons(world: World, items: List[AllItemValues])
Input : world : World - world to add item entities to
items : List[AllItemValues] - List of weapons items
Output : None
Description : Adds weapons to world

3.8.3 QuestFactory

Figure 72: QuestFactory Class Diagram
QuestFactory is used on bootup to create all initial quests in the game and store
them inmemory.
Operations
Operation: bootup(world : World)

Input : world : World - the world to store quests
Output : None
Description : Read all necessary input files and create quests

73

Operation: getQuest(path: String)
Input : path : String - file of stored quests
Output : Returns a List[Quest] of quests loaded in
Description : Adds quests to game

3.8.4 GraphFactory

Figure 73: GraphFactory Class Diagram
GraphFactory is used with the AI components to see if a AI’s position is in the
map and to generate a graph of allowable positions
Operations
Operation: convertPositionToGrid(position: Position, ratio:Float)

Input : position: Position - the position to use
ratio: Float - Ratio to divide position by
Output : Returns graph of allowable positions
Description : Convert the position to a grid

Operation: generateGraph(world: World)
Input : world: World - world to collect tilemap from
Output : Returns a 2D array of nodes
Description : Generates a graph of nodes

Operation: inbounds(max: Int, indexes: Int*)
Input : max: Int - max length to check against
indexes: Int* - list of indexes to check inbounds Output : Returns boolean if one
does not match
Description : Checks if list of indexes is in range

74

3.8.5 EntityFactory

Figure 74: EntityFactory Class Diagram
EntityFactory is used to create the initial rooms files and import them into the
world and also used to create all character entities.
Operations
Operation: loadCharacter(world : World,webSocket: WebSocketFrameEvent,

entityId: String, characterName: String, x: Int, y: Int, actor : ActorSelection)
Input : world : World - the world to add player entity
entityId: String - the database id for the player
characterName: String - the players name
x: Int - the x coordinate of player
y: Int - the y coordinate of player
actor : ActorSelection - the Connection to the player computer
Output : None
Description : Create character entity and create components based on given in-
formation

Operation: createRoom(world : World, roomId : Int, tileMap : TileMap)
Input : world : World - the world to add room too
roomId : Int - the Id to give to room
tileMap : TileMap - The tilemap component to add to the room

75

Output : None
Description : Creates room entity and gives entity roomId and tilemap compo-
nent

Operation: loadRoomFromJson(world : World, roomId : Int, jsonFile : String)
: Entity
Input : world : World - the world to add room too
roomId : Int - the Id to give to room
jsonFile : String - file to read and create roomwith
Output : Returns created room Entity
Description : Takes in roomJSONFile and reads in values and creates Entitywith
it

4 Network System
This section defines the networking system which is responsible for receiving,
interpreting, and processing network messages coming from the frontend. Ad-
ditionally the network system is provides services for login, character creation,
character selection, and the world editor. The networking system distributes
work fromaNetworkMessageInterpreterSupervisorwhich splits JSONmessages
from the frontend to a pool of NetworkMessageInterpreters each of which in-
dividually converts the partition of messages it has received into different Net-
workMessages. These NetworkMessage are then added to the NetworkMes-
sageQueue. Once per frame rate the game loop flushes all the messages out of
the queue and sends them to the NetworkMessageProcessorSupervisor. This
supervisor in turn distributes them among a pool of NetworkMessageProces-
sors.

76

4.1 NetworkMessageQueue

Figure 75: NetworkMessageQueue Class Diagram
NetworkMessageQueue is an actor that only accepts two types of messages.
These messages are described below. The only member of this actor is an ar-
ray calledmessages which stores case classes of type NetworkMessage.
Operation: AddInterpretedMessage(message: NetworkMessage)

Input: message: NetworkMessage - Themessage to be added to the queue.
Output: None
Description: Adds themessage to the queue.

Operation: FlushMessages()
Input: none
Output: an array full of all themessages stored in the queue since the last flush.
Description: Returns themessages that have been stored since the lastflush and
empties the queue.

4.2 NetworkMessageInterpreter
Requirements met: 4.2

77

Figure 76: NetworkMessageInterpreter Class Diagram
NetworkMessageInterpreter is an actorwhich only accepts one type ofmes-

sage containing the case class InterpretMessage. InterpretMessage contains a
string which is currently JSON. This may be optimized later to decrease band-
width usage. However for now the JSON must contain an object with a field
"type". This type field is then sent through a switch. The output of each case is
a case class deriving from NetworkMessage which is sent to the NetworkMes-
sageQueue actor instead of being outputted in a more traditional manner. The
follow cases contain the other fields that must be specified along with the type
field for each type.
Operation: interpretMessage(wsFrame: WebSocketFrameEvent

Input: wsFrame: WebSocketFrameEvent -Thewebsocket theuser connectwith.
Output: Depends on the type of themessage.
Description: Reads the message out of the WebSocket frame and extracts the
type. It thenmatches on the type and handles it in the following ways.

Case: "init"(characterName: String)
Input: characterName: String - The name of the character to be added to the
world.
Output: AddsAddNewCharacter andSocketCharacterMapmessages to thequeue.
Description: Creates an id for the character. It passes that id into the queue in
the AddNewCharacter message with the characterName, the WebSocket, and
starting positions. It also passes the character id and web socket to the queue
via a SocketCharacterMap.

Case: "move"(start: boolean, dir: Int)
Input: start: boolean -Whether the action is starting or stopping.
dir: Int - An integer value 0-7. 0 is up and each subsequent value is 45 degrees to
the right of the previous.

78

Output: AddsaMoveMessage to thequeuecontaining theWebSocket, aMoveDi-
rection, and start.
Description: Converts the dir int to a MoveDirection which is UpDirection, Up-
RightDirection, etc.

Case: "attack"()
Input: none
Output: Adds an attackmessage to the queue.
Description: TheWebSocket is passed into the queue so that it can use it to look
upwhich character issued the attack.

Case: "chat"(message: String, receiverName: String)
Input: message: String - The chat message to be sent.
receiverName: String - The name of the character the message is being sent to.
Output: Adds a ChatMessage to the queue which contains the message, the re-
ceiverName, and theWebSocket of the sender.
Description: theWebSocket is passed into the queue so that it can use it to look
upwhich character sent themessage.
Requirements met: 3.3.10.1.2

Case: "open"(containerId: String)
Input: containerId: String - The id of the container that is being opened by the
character.
Output: Adds anOpenMessage to the queue.
Description: Passes the containerId and the WebSocket of the opener to the
queue via theOpenMessage.

79

4.3 NetworkMessageProcessor

Figure 77: NetworkMessageProcessor Class Diagram
TheNetworkMessageProcessor receivesNetworkMessages fromthegame loop
and processes them in a variety of ways. Depending on the subtype of the Net-
workMessage it is processed differently. The following cases show these differ-
ent ways of processing NetworkMessages. These NetworkMessages store val-
ues which are essentially parameters to the case statement.

Name Type Description
actorSystem ActorSystem The Akka Actor System

which stores all the actors.
world World World which all entities be-

longs to.
socketMap ConcurrentMap[String,

String]
Maps character ids to the id
of their WebSocket connec-
tion.

Case: AddNewCharacter(webSocket: WebSocketFrameEvent, id: String,
characterName: String, x: Int, y: Int)
Input: webSocket: WebSocketFrameEvent -TheWebSocket the character is con-
nected to.
id: String - the entity id of the character to be added to the world. Not to be con-
fused the id property from the database.
characterName: String - the name of the character to be added.
Output: Writes an initialmessage to theWebSocket so the frontend can load the
game.
Description: Loads the character out of the database and creates an entity for it.
Calculates level and adds the character to the world.

80

Case: AttackMessage(webSocket: WebSocketFrameEvent)
Input: webSocket: WebSocketFrameEvent -TheWebSocket the character is con-
nected to.
Output: None
Description: Retrieves the character entity that is mapped to theWebSocket. It
then spawns an attack entity in front of that character. Any entities who collide
with that attack entity suffers the effects of that attack.

Case: OpenMessage(webSocket: WebSocketFrameEvent, containerId: String)
Input: webSocket: WebSocketFrameEvent -Thewebsocket the character is con-
nected to.
containerId: String - The id of the container entity which is being opened.
Output: Writes a message to the WebSocket informing the frontend that the
container has been opened.
Description: Removes the items fromthecontainer entity specifiedbycontainerId
and puts them in the player’s inventory.

Case: SocketCharacterMap(webSocket: WebSocketFrameEvent, id: String)
Input: webSocket: WebSocketFrameEvent -TheWebSocket the character is con-
nected to.
id: String - The id of the character entity which is being added to the socketMap.
Output: None
Description: Adds an entry to the socketMap linking the character entity id to
theWebSocket id. This allows for lookup of characters based onWebSockets.

Case: ChatMessage(webSocket: WebSocketFrameEvent, message: String,
receiverName: String)
Input: webSocket: WebSocketFrameEvent -TheWebSocket the character is con-
nected to.
message: String - The chat message that is being sent.
receiverId: String - The id of the character entity which the chat message is sent
to.
Output: Writes a chat message to the receiving character’s WebSocket. Also
writes themessage to the database.
Description: Looks up the sending character by the WebSocket id. Sends the
chat message to the receiving character. Stores the message and both charac-
ters in the databse.

81

4.4 SockoServer
TheSockoServerhandles all requests fromthe frontend. It’s only operation "run"
sends handles requests differently based on whether they are an HTTPRequest
orWebSocketFrame. HTTPRequests are further handled based on the path. Re-
quirements met: 3.1, 3.2
WebSocketFrame When a WebSocketFrame comes it is simply sent tothe

NetworkMessageInterpreterwrappedwithin a InterpretMessage(wsFrame) case
class where wsFrame is theWebSocket.

Path: /login Sends a LoginPost(httpRequest) message to the Authorization-
Processor.
Path: /register Sends a RegisterPost(httpRequest) message to the Authoriza-
tionProcessor.
Path: /chars Sends a CharactersPost(httpRequest) message to the Authoriza-
tionProcessor.

4.5 AuthorizationProcessor
The AuthorizationProcessor is responsible for handling user actions outside of
the game world. These actions are received at different routes. The Authoriza-
tionProcessor receives different messages from the SockoServer. These mes-
sages are handled the following ways:
Case: LoginPost(request: HttpRequestEvent)

Input: request: HttpRequestEvent - The HTTPRequest which user sent.
username: String - An encrypted username for the user.
password: String - An encrypted password for the user.
Output: If the credentials are valid a HTTP 200 responsewith a tokenwhich can
be used for further secure communication. If the credentials are invalid then a
HTTP 401 response is outputted.
Description: Validates the user’s credentials and either returns an authorization
token or a HTTP 401 response.

Case: RegisterPost(request: HttpRequestEvent)
Input: request: HttpRequestEvent - The HTTPRequest which user sent.
username: String - An encrypted username for the user.
password: String - An encrypted password for the user.
Output: A 200 HTTP response if the username is not taken or a 401 HTTP re-
sponse if it is.
Description: Registers the user within the database if the username is not taken.

82

Case: CharactersPost(request: HttpRequestEvent)
Input: request: HttpRequestEvent - The HTTPRequest which user sent.
token: String - The authorization token that was generated upon login. Output:
A list of character data containing each character’s name, level, and class.
Description: Looks up all the characters associated with the user’s account and
returns them in a JSON list.

5 AyaiWebApplication
5.1 Overview
This section covers the portion of the application that handles account details
outside of the game client and world editor. The user interacts with these mod-
ules to handle character creation, character selection, and account settings.

5.2 Login Page
Requirements met:
3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.1.5, 3.1.6
The login module handles account registration and authenticating users
information. Users enter their information and choose to either login or register
with the information after being validated by the system. After this, the user is
sent to the the character selection screen.

83

5.3 Character Creation

Figure 78: Activity diagram for creating a character
Requirements met:
3.2.1.6, 3.2.2.1, 3.2.2.2, 3.2.2.3, 3.2.2.4, 3.2.2.5, 3.2.2.6, 3.2.2.7, 3.2.2.7, 3.2.2.8,
3.2.2.9, 3.2.2.10, 3.2.2.11
This module allows users to create characters to play in the game. Users are
presentedwith a list of characters and their descriptions. Once they choose
their desired class, they choose an available character name and submit their
preferences.

84

5.4 Character Selection

Figure 79: Activity diagram for selecting a character
Requirements met:
3.2.1.1, 3.2.1.5, 3.2.1.6
This module allows users to select their character. Once they havemade their
choice, they load into the game and begin playing.

85

5.5 Changing Settings

Figure 80: Activity diagram for changing account settings
Requirements met:
3.2.3.1, 3.2.3.2, 3.2.3.3, 3.2.3.4, 3.2.3.5
This module allows users to change their settings. They are presentedwith a
form that allows them to set their email address and password.

86

6 AyaiWorld Editor
6.1 Searching

Figure 81: Activity diagram for searching the world editor
Requirements met:
2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.1.5
This module allows users to search for entries within the world editor. As users
type, the systemmakes suggestions to help them findwhat they are looking for.

87

6.2 Creating and Editing a New Entry

Figure 82: Activity diagram for adding an entry to the world editor

88

Requirements met:
2.1, 2.2, 2.3, 2.4, 2.5, 2.6
This module allows users to add the data that defines the game. Entries are
objects such as classes, items, and spells. Once in the editor section, a user
searches for an existing entry or uses themenu (as defined in the Ayai Software
Requirements Document). To create a new entry, a user creates a new entry by
going to that category’s overview pagewhere they find a button to create a new
entry. At this point, theymake changes that are relevant for that category. The
user saves or cancels any changes after they finish.

7 GameClient
7.1 Overview

Figure 83: GameClient - UMLDiagram
TheGameClient is the frontend implementationof theAyai project. It is abrowser
game leveragingWebGL,HTML5canvasandWebSocket technologies. TheGame
Client uses WebSockets to send requests to the server and receive responses,
interpreting the data it receives to render the views in either WebGL canvas
(Sprites and TileMaps) or HTML elements (UI Elements).
The game client makes extensive use of the open source JavaScript project

Phaser.js (http://phaser.io/) in the following areas:

89

• Rendering themap and entity sprites inWebGL
• Mouse/Keyboard input
• Audio (Music and Sound Effects)
The full documentation forPhaser.js canbe foundhere: http://gametest.mobi/phaser/docs/Phaser.html

90

7.2 Graphics

Figure 84: GameClient - UMLDiagram - Graphics

91

7.2.1 Display
Attributes

Name Type Description
unitFrames Array[Unitframe] An array containing a refer-

ence to each Unitframe, in-
cluding player, target, and
group unitframes

inventory Inventory Reference to the singleton
Inventory object

actionBar ActionBar Reference to the singleton
ActionBar object

chat Chat Reference to the singleton
Chat object

questLog QuestLog Reference to the singleton
QuestLog object

peopleList PeopleList Reference to the singleton
PeopleList object

tileMap Phaser.Tilemap Reference to renderable
Phaser tilemap - constructed
with a Tiled JSON object

Operations
Operation: renderMap(tileset: string, tilemap: string)

Input : tileset : string - name of the tileset loaded by Phaser
tilemap : string - name of the tilemap loaded by Phaser
Output : None
Description : Indexes the loaded tileset and tilemap by their names, queries the
browser for its dimensions and sets up the gamecamera/entities, thenpasses the
tilemap to Phaser to be rendered inWebGL

7.2.2 UIElement
Attributes

Name Type Description
isOpen boolean A flag that denotes whether

or not this UI Element is
openand shouldbe shownon
screen

Operations
Operation: toggle()

92

Output : None
Description : Opens the UI element if isOpen is false and sets isOpen to true.
Closes the UI element if isOpen is true and sets the isOpen to false.
Operation: update(json)
Input : json : string
Output : None
Description: Synchronizes the UI element on the given JSON, updating the view
with the new values.

7.2.3 UnitFrame
Attributes

Name Type Description
isOpen boolean A flag that denotes whether

or not this UI Element is
openand shouldbe shownon
screen

entityId string The id of the entity whose vi-
tals this unitframe is tracking

Operation: toggle()
Output : None
Description : Unused by Unitframes, these elements cannot be hidden by the
player
Operation: update(json)
Input : json : string
Output : None
Description: Synchronizes the UI element on the given JSON, updating the view
with the new values. Updates the health, mana, experience, and status effect
views on the unitframe.
Requirements met: 3.3.2, 3.3.3, 3.3.6.1

7.2.4 Chat
RequirementsMet: 3.3.10, 3.8.2

Attributes

93

Name Type Description
isOpen boolean A flag that denotes whether

or not this UI Element is
openand shouldbe shownon
screen

Operation: toggle()
Output : None
Description : Unused by Chat, this element cannot be hidden by the player
Operation: update(json)
Input : json : string
Output : None
Description: Synchronizes the UI element on the given JSON, updating the view
with the new values. Updates the chat messages that have been sent to the
player.

7.2.5 Inventory
Requirements Met: 3.3.6.1, 3.3.9.1, 3.3.9.4, 3.3.9.2, 3.3.9.3, 3.3.9.6.1, 3.3.9.6.2,
3.3.9.7, 3.3.9.5

Attributes
Name Type Description
isOpen boolean A flag that denotes whether

or not this UI Element is
openand shouldbe shownon
screen

Operation: toggle()
Output : None
Description : Unused by Chat, this element cannot be hidden by the player
Operation: update(json)
Input : json : string
Output : None
Description: Synchronizes the UI element on the given JSON, updating the view
with the new values. Updates the chat messages that have been sent to the
player.

94

7.2.6 QuestLog
Name Type Description
isOpen boolean A flag that denotes whether

or not this UI Element is
openand shouldbe shownon
screen

quests Array[Quest] The list of quests that the
player has accepted

Operation: toggle()
Output : None
Description : Opens the UI element if isOpen is false and sets isOpen to true.
Closes the UI element if isOpen is true and sets the isOpen to false.
Operation: update(json)
Input : json : string
Output : None
Description: Synchronizes the UI element on the given JSON, updating the view
with the new values. Updates the list of quests that the player has accepted.

7.2.7 Quest
Name Type Description
name string Name of the quest
description string Description of the quest
level int Level of the quest
rewards Object JavaScript object containing

information for experience,
gold, and items received for
completing the quest

finished boolean Flagwhich indicateswhether
theplayer has completed this
quest

Operation: toggle()
Output : None
Description : Opens the UI element if isOpen is false and sets isOpen to true.
Closes the UI element if isOpen is true and sets the isOpen to false.
Operation: update(json)
Input : json : string
Output : None
Description: Synchronizes the UI element on the given JSON, updating the view
with the new values. Updates the list of players in the same room as the player.

95

7.2.8 PeopleList
RequirementsMet: 3.3.6.3, 3.8.1

Name Type Description
isOpen boolean A flag that denotes whether

or not this UI Element is
openand shouldbe shownon
screen

Operation: toggle()
Output : None
Description : Opens the UI element if isOpen is false and sets isOpen to true.
Closes the UI element if isOpen is true and sets the isOpen to false.

Operation: update(Json)
Input : json : string
Output : None
Description: Synchronizes the UI element on the given JSON, updating the view
with the new values. Updates the list of players in the same room as the player.

7.2.9 SettingsMenu
Name Type Description
isOpen boolean A flag that denotes whether

or not this UI Element is
openand shouldbe shownon
screen

Controls Keys[Quest] The list of keysbound to their
functions.

Operation: toggle()
Output : None
Description : Opens the UI element if isOpen is false and sets isOpen to true.
Closes the UI element if isOpen is true and sets the isOpen to false.
Operation: update(json)
Input : json : string
Output : None
Description: Synchronizes the UI element on the given JSON, updating the view

96

with the new values. Updates the list of keys and their bindings.

97

7.3 Game

Figure 85: GameClient - UMLDiagram - Game

98

7.3.1 Ayai
Attributes

Name Type Description
playerId String The players ID given by the

server
connection Connection Games connection object
display Display Games display object
gameStateInterface GameStateInterface Games singleton copy of the

gameStateInterface object.

Operation: preload()
Output : None
Description: Starts preloading all the assets. Calls create when the assets are
finished loading.

Operation: create()
Output : None
Description: Creates all theUI elements for the game after the assets are loaded
by preload.

Operation: _msgReceived(msg:Event)
Output : None
Description: Called when a message is received on the websocket connection.
Dispatches themessage to the correct location based on the type ofmessage re-
ceived.

7.3.2 GameStateInterface
Requirements met: 3.3.4, 3.3.5, 3.3.6, 3.3.7, 3.3.8Attributes

Name Type Description
character PlayerCharacter The sessions current charac-

ter
entities Array[Entity] Sprite given to phaser for

rendering
target Entity Current entity which is se-

lected in the game

99

Operations
Operation: update()

Output : Void
Description : Calls Phaser.JS to rerender the stage.

Operation: sendMovement()
Output : Void
Description : Use phaser.js to detect which keys are down and send the correct
movementmessages to themessage sender.

Operation: updateEntities(json:String)
Input: json : JSON representation of entities to be updated in string format. Out-
put : Void
Description : Update the position of entities. Also handle the creation and dele-
tion of entities.

Operation: addCharacter(json:String)
Input: json : JSON representation of character to be added. Output : Void
Description : Add character entity to GameStateInterfaces list of entities.

Operation: removeCharacter(json:String)
Input: json : JSON representation of character to be added. Output : Void
Description : Remove character entity to GameStateInterfaces list of entities.

Operation: handleKeyInputEvent(inputEvent:InputEvent)
Input: json : JSON representation of character to be added. Output : Void
Description : Handle keyboard inputs and send corresponding messages to the
message sender based onwhich keys are pressed.

Operation: sendAttack()
Output : Void
Description : Send attackmessage tomessage sender.

7.3.3 InputHandler
RequirementsMet: 3.5

100

Attributes
Name Type Description
boundKeys Array[PhaserKey] List of bound keys.

Operation: registerKeyPresses()
Output : Void
Description : Iterates over the bound keys and register them with the phaser
keypress detection functions.

101

7.4 Net

Figure 86: GameClient - UMLDiagram - Net
7.4.1 Connection
Attributes

Name Type Description
webSocket WebSocket Thewebsocket object for the

connection to the backend

102

Operation: Connection(urlString: String)
Input : urlString : String : string of the url of the backend server
Output : Void
Description : Constructor for this classwhich takes the url of the backend server.

Operation: send(msg:String)
Input : msg : String : string of themessage to be sent.
Output : Void
Description : Sends themessage through the websocket to the backend.

Operation: connect()
Output : Void
Description : Creates the websocket object and starts the connection.

7.4.2 MessageReceiver
Attributes

Name Type Description
message Object Javascript Object version of

themessage after parsing.

Operation: MessageReceiver(message: String)
Input : message : String : JSON string representation of the message. Output :
Void
Description : Constructor for this class which calls parse on the passed in mes-
sage string.

Operation: parseMessage(msg:String)
Input : msg : String : text to parse Output : Void
Description : Parses the passed in message and sets the class attribute message
to the parsed object.

Operation: createEvent()
Output : Event
Description : Creates amessage received event based on themessagewhich has
been parsed.

103

8 Database Design
The following is a UML style database diagram. It uses standard conventions.
The only exception is the tag EK. EK stands for entity key. An entity key refers to
an entity defined in the game files.

Figure 87: Database Diagram
Table: Account

id: autonumber - A unique id for each account.
username: varchar(20) - The account’s username. Must be 6-20 characters.
email: varchar(20) - The user’s email address. Must be standard email format-
ting.
password: varchar(20) - The user’s password. Must be 8-20 characters.
Description: Each user of the system creates one account. This account is used
for authentication and linking all the user’s data.

Table: Token
id: autonumber - A unique id for each token.
account_id: long - The account the token belongs to. This is a foreign key refer-
encing the id field of the account table.
token: char(36) - The authentication token that is created when the user logs in.
This is always 36 characters long.

104

Description: Each time a user logs in a token is created, sent to them, and stored
in the database. The client uses this token to verify they are still the same user.

Table: Chat
id: autonumber - A unique id for each chat.
sender_id: long - The account that sent the chat message. This is a foreign key
referencing the id field of the account table.
message: varchar(255) - The chat message that was sent.
receiver_id: long - The account chat message was sent to. This is a foreign key
referencing the id field of the account table.
is_received: boolean - Indicateswhether or not the chat has been receivedby the
receiver account.
time_sent: datetime - The time themessage was sent.

Table: Character
id: autonumber - A unique id for each character.
account_id: long - The account the character belongs to. This is a foreign key ref-
erencing the id field of the account table.
name: varchar(20) - A unique name for the character.
className: char(10) - The class of the character.
experience: int - The character’s progress towards a certain level. The level at-
tribute is calculated from this number using the experience array from the config
files.
room_id: long - The id of the room the character is in. This id references the con-
fig files fromwhich all the game content is loaded.
pos_x: int - The x position of the character within the room.
pos_y: int - The x position of the character within the room.

Table: InventoryEntry
id: autonumber - A unique id for each inventory entry.
character_id: long - The character the itembelongs to. This is a foreign key refer-
encing the id field of the character table.
item_id: long - The item that belongs to the character. This id references the con-
fig files fromwhich all the game content is loaded.

Table: Equipment
id: autonumber - A unique id for each equipment entry.
character_id: long - The character the itembelongs to. This is a foreign key refer-
encing the id field of the character table.
item_id: long - The item that belongs to the character. This id references the con-
fig files fromwhich all the game content is loaded.
slot: varchar(20) - This is the slot that the item is equipped in. When an item is

105

equipped it is removed from the inventory table and added to the equipment ta-
ble. When it is unequipped this process is removed.

9 TraceabilityMatrix
Requirements Document Number Design Doc Reference Number
2.1 (Search) 6.1
2.2 (Menu) 7.2, 6.2
2.3 (Overviews) 7.1, 6.2
2.4 (Entries) 6.2
2.5 (Assets) 7.3, 6.2
2.6 (Assets) 7.2, 6.2
3.1 (LoginScreen) 5.3, 4.3, 6.2
3.2 (Account) 5.3, 4.3, 4.4, 5.5, 6.2
3.3 (GameScreen) 7.1, 7.2, 4, 3.1, 3.2, 3.3, 3.4, 3.5, 3.5, 3.6, 3.7,

3.8
3.4 (SettingsMenu) 7.2
3.5 (Control Screen) 7.2.9
3.6 (Help Screen) 7.2
3.7 (Sound Screen) 7.2
3.8 (Other Players Screen) 7.2.8
3.9 (Journal Screen) 7.2.6, 7.2.7
4.1 (AI System) 3.4.14
4.2 (Entity Actions) 4.2

Glossary
A* a pathfinding algorithm that finds the most efficient path between 2 points.

106
ACID compliant A set of properties that guarantee that database transactions

are processed reliably (Atomicity, Consistency, Isolation, Durability).. 106
Action A spell or ability a character or an item can perform. 106
Administrator User with ability to ban users or give access to certain players.

106
Algorithm a step by step procedure for calculations and data processing. 106
Animation rapid display of static pictures based on certain player movement

and commands. 106

106

ArrayBuffer Amutable list.. 106
Authentication verify the users credentials on the server to give access to game

and characters. 106
Backend any processing that takes place remotely from the players location.

106
Breadcrumb Anavigation aidwhich allows users to keep track of their locations

within the program. 106
Character A single entity in an MMORPG game world which can interact with

the gameworld. 106
Character Level Measures the overall effectiveness of a character. As the char-

acter’s level increases, so does the value of their statistics. 106
Character Statistics (Stats) Measure how effective a given character is at cer-

tain tasks. Example: Strength, Agility, Intellect. 106
Class a method of differentiating game characters that have different sets of

abilities and statistics. 106
Component A structure of data which is held inside of an entity. 106
Cooldown after an attack has been down, there is a time based countdown be-

fore the player can do that same attack again. 106
Damage A reduction in a character’s health. 106
Damage Type The type of damage that is being dealt to a character. Examples:

fire, physical, etc. 106
Database organized collection of data and supports processing of information.

106
Effect Amagical component which applies a status to its target. 106
Entity A list of components. 106
Entry An instance of content that defines the objects and actions that make up

the gameworld. 106
Experience A value that measures a character’s progress to the next Character

Level. 106
Faction An organization within the gamewhich NPCsmay belong to. 106
Frontend any processing that takes place on the players computer/application.

106

107

Game State The complete knowledge of everything contained within the game
at a current point in time. 106

GameWorld The collection of all rooms, or zones and the characters they con-
tain which aremanaged by the server(s). 106

Health A statistic which measures how much damage a character can sustain
before the character dies. 106

HTTP Secure (HTTPS) An implementationofHTTPwithenhanced security.. 106
HyperTextMark Up Language (HTML) The latest revisionof amarkup language

used to organize content for the web. 106
HyperText Transfer Protocol (HTTP) Anapplicationprotocol fordistributed, col-

laborative, hypermedia information systems.. 106
Java VirtualMachine (JVM) Java VirtualMachine. 106
Latency time delay experienced by a system. 106
Mana a resource that a character can expend to use different abilities. 106
MassivelyMultiplayer Online Game (MMO) Anonlinevideogame inwhich there

is a central game world managed by one or more servers to which many
players, or clients, can connect in order to interact with one another. 106

Melee a short range attack that is only limited to the area immedietely around a
character. 106

Non-Player Character (NPC) Non-playable characterswhosactions areprocessed
by server(s) of anMMORPG. 106

Player A player is a personwho controls an avatar. 106
Player Character (PC) The representationof aplayer in theMMORPGgameworld.

106
PostgreSQL Anopen-sourceobject-relational databasemanagement system (OR-

DBMS) with an emphasis on extensibility and standards-compliance.. 106
Prop A purely aesthetic visual element which has no impact on game play. (Ex-

ample: a bush.). 106
Quest Amissionwithoneormoreobjectives, usually resulting in a rewardand/or

story advancement when all objectives are complete. 106

108

Role Playing Game (RPG) A game in which players control characters intended
to represent themselves. 106

Room One piece of the game world. Rooms will be connected by portals which
will be the only way to enter or leave a room. 106

Scala AJVMprogramming language incorporatingobject orientedand functional
programming paradigms. 106

Scala Build Tool (SBT) A tool used to compile and run Scala projects. 106
Sprite A small imagewhich is used to represent a game entity. 106
Spritesheet Afilewhichhasmultiple images representingdifferent stagesof an-

imations for a game entity. 106
Status Effect An effect on a character/player/enemy that increases or decrease

a statistic from the normal amount. 106
SuperUser a user with access to all abilities and moderation functions of an ap-

plication. 106
Tilesheet A list of sprites for use in building amap. 106
WebGraphics Library (WebGL) is a javascript API for rendering interactive 3D

graphics and 2D graphics within a compatible browser. 106

109

	Introduction
	Purpose
	Scope
	Context Diagram

	Architecture
	Overview
	Servers
	Web Server
	Authorization Server
	Socko Server
	Database

	Network Message Interpretation/Processing
	Game State
	Systems
	AI System
	NetworkSystem

	Detailed Design
	ECS Game Loop
	World
	Entity
	System
	EntityProcessingSystem
	TimedSystem
	IntervalSystem
	Component
	Game Loop

	Components
	Position
	Actionable
	Attack
	Bounds
	Character
	Frame
	Health
	Inventory
	Velocity
	Time
	Mana
	Stats
	Stat
	Transport
	NetworkingActor
	Respawn
	TileMap
	ItemUse
	Experience
	Cooldown
	Quest
	QuestBag
	Equipment

	Items
	Item
	ItemType
	Weapon
	Weapon

	Systems
	MovementSystem
	CollisionSystem
	HealthSystem
	RespawningSystem
	FrameExpirationSystem
	NetworkingSystem
	NPCRespawningSystem
	LevelingSystem
	StatusEffectSystem
	CooldownSystem
	ItemSystem
	AttackSystem
	RoomChangingSystem
	AISystem

	Status Effects
	Effect
	TimeAttribute
	OneOff
	TimedInterval
	Duration
	Multiplier

	Movement Processes
	Action
	MovementDirection
	MovementDirection Case Classes

	Collision Objects
	QuadTree
	Rectangle

	Factories
	ClassFactory
	ItemFactory
	QuestFactory
	GraphFactory
	EntityFactory

	Network System
	NetworkMessageQueue
	NetworkMessageInterpreter
	NetworkMessageProcessor
	SockoServer
	AuthorizationProcessor

	Ayai Web Application
	Overview
	Login Page
	Character Creation
	Character Selection
	Changing Settings

	Ayai World Editor
	Searching
	Creating and Editing a New Entry

	Game Client
	Overview
	Graphics
	Display
	UIElement
	UnitFrame
	Chat
	Inventory
	QuestLog
	Quest
	PeopleList
	Settings Menu

	Game
	Ayai
	GameStateInterface
	InputHandler

	Net
	Connection
	MessageReceiver

	Database Design
	Traceability Matrix
	Glossary

