Ayai Design Document

Jared Roberts Jarrad Battaglia Ryan Lerch
Kurt Wheeler Robert Mruczek Timothy Hahn
Joshua Henry

February 2014

Advisor: Santiago Ontanon

Contents

(1 Introduction| 5
L PUMPOSE - . o v o e e e e e e e e 5
T 5
T3 ContextDiagram|. o v ittt e 5

[2__Architecturel 6
DI OVerVIEW! .« o v o oo e e e e 6
227 Serversl. 7

221 WebServerl 7
2.2.2 _AuthorizationServer| o L. 7
22.3 SockoServer. e 7
224 Databasel 7
[2.3__Network Message Interpretation/Processing|. 7
................................. 8
................................... 8
.............................. 8
252 NetworkSystem|. 8

8

. ameloop| 8
................................ 10
. ntity] 12
s ”
3.1.4 EntityProcessingSystem|. 15
3.1.5 TimedSystem| L. 16
3.1.6 IntervalSystem| 17
3.1.7 Component] 18
3.1.8 Gameloop|........ 18

[3.2 Components| 19
B2 Position]. . . . oo oo e e 21
.22 Actionablel 21
B23 AttacKl. 22
B2Z4 Boundsl0iiii 22
325 Characterl e 23
B26 Framel. 23
3.2./ Healthl 24
3.2.8 Inventoryl.o 26
3.2.9 Velocity|.o 27
B2I0Tmel. . . . oo 27
B2ITManalco i 28
B2I2Statsl. 30
B2ITStaflo 30
3.2.14 Transport]. o 31
[B215 NetworkingActor] 32

............................... 33
B2I8TtemUsel oot 34
[3.2.19 Experience|. o 35
3.2.20 Cooldown| 36
3.2.21 Quest] 37
3.2.22 Q Bag|. e 38
[B223 Equipment] 38

B3 Ttemsl. o 40
B31 Tteml. oo 41
[3.32 temTypel 42
B33 WEAPOM - « « v e e e e e e 42
B3A _WEAPOM . -« v oo e oo 43

................................... 44
[38.4.1 MovementSystem| L. 45
4. ollisionSystem|, 46
3.4.3 HealthSystem|, 48
44 RespawningSystem|. 48
[B:45 FrameExpirationSystem] 49
[3.4.6 NetworkingSystem| 50
..................... 51
.......................... 52
........................ 52
[3:410 CooldownSystem] 53
[3.4.11 ltemSystem| L o 54
3.4.12 AttackSystem| 55
4. RoomChangingSystem| 56

414 AlSystem|. 57

................................ 58
BEI _Effec oo 59
3.5.2 TimeAttribute| 61
353 OneOffl 62
3504 Timedlntervall 62
.55 Durationl 63
13.5.6 Multiplier]. 64

3.6 _Movement Processes| 65
BE8I Actionl.o v 65
3.6.2 MovementDirection| 66
8.6.3 MovementDirectionCaseClasses| 66

13.7 CollisionObjects|. 67
/. uadTree|. 67
[8.72 Rectanglef. o o 69

B8 Factories]t 70
[8.8.1 Classkactory|. 71
B82 TOMFACIOTYl - « « o o o eevee e oo 72
[B83 QuestFactory] 73

[8.8.4 GraphFactory]

ntityFactory|o

@

Network System|

E I ! etworE! essaie- UBUE| . . . e e

EZ ﬂetworEMessage!nterEreter|

. etwor €SSAgEFTrOCEeSSOr| v o e e e

5

Ayail Web Application

5.2 loginPagel. e

5.3 CharacterCreation] v v v v vt e e e

5.5 ChangingSettings|o

|6__Ayai World Editor|
..................................

6.2 Creatingand EditingaNewEkntry|

1725 Inventory|.
[72.6 Questlogl.
727 Quest
[728 Peoplelist| 0 .
[729 SettingsMenu]

[8

Database Design|

2

Traceability Matrix|

1 Introduction

1.1 Purpose

This document specifies the entire software architecture and design for the Ayai
MMORPG game and framework. The design decisions directly relate to the func-
tionality, performance, constraints, attributes, and interfaces of the system. Ayai
is a massively multiplayer online game that allows developers to implement re-
search level Al and test its functionality with a potential base of approximately
20 players. Also provided is an open source framework that eases development
of 2D web-based MMORPGS. In order to achieve these goals, the framework fo-
cuses on scalability, security, accessibility, and flexibility.

1.2 Scope

This document describes the software architecture and design for the initial re-
lease of Ayai, as described in the Ayai Software Requirements Document. The in-
tended audience of this document exclusively includes the designers, developer,
testers, and open-source developers who may use this framework.

1.3 Context Diagram

The context diagram shown in Figure[I]shows how the major components of the
Ayai system fit into context with other components.

HTTPWgbSackess
Ayai Proxy
TTF
WebSackot
Ayai Frontend

HT TP
Authentication Server

Ayai Backend

Database Server

Ayai Database

Figure 1: Context Diagram

The web server serves the Ayai frontend as a static web page. The autho-
rization server handles authentication requests. Ayai’s backend uses WebSocket
connections to receive messages from the browser and return relevant game
state and events.

2 Architecture

Network Message Interpreter/Processor (Scala)

_J NetworkMessagelnterpreter
l Networ terpreterSupervisor
Thread oo
u NetworkMessageQueue Jl

3
Database
- NetworkMessageProcessor NetworkMessageProcessorSupervisor
Networking System (Scala
—

—{ Socko Server ame State(Scala]

—{ Autharization Server Worlds
Eni Eni

TIPS

HrT—]
HTTPIWebSodkets WehGL Game Frontend
(JavaScript)
s

Figure 2: Architecture Diagram

2.1 Overview

The architecture behind Ayai is a collection of distinct, loosely coupled systems
that divide responsibilities into appropriate groups and categories. The Ayai ar-
chitecture also takes advantage of the actor model of concurrency in order to
process the heaviest tasks in a distributed and concurrent manner. Notable por-
tions of the system include the web server which provides a copy of the frontend
for each player, the collection of servers that handle various authorization and
database operations, and the distributed systems of supervisors and actors that
interpret and process commands from the user, process changes to the game
state, and returns updated data back to the user.

2.2 Servers
2.2.1 Web Server

The frontend of the Ayai project is a website comprising of static HTML5 con-
tent. The web server nginx has the task of receiving all HTTP/HTTPS/WebSocket
connections from the user. nginx was chosen due to its static page serving per-
formance and capabilities and reverse proxy features. When the user first browses
to the Ayai website, nginx returns a static copy of the website. However, if the
user has an authentication request or is sending a game command, nginx proxys
the request to the appropriate server

2.2.2 Authorization Server

A simple authorization server provides authentication for the Ayai system. As
WebSockets do not natively support authentication, HTTPS is used in tandem
with WebSockets in order to provide user security and authorization. Users send
their credentials over HTTPS using the Basic Access Authentication mechanism
and, if validated, receives a temporary token to validate their WebSocket con-
nection.

2.2.3 Socko Server

The WebSocket server (created using the Socko library) accepts WebSocket con-
nections forwarded by nginx and expects them to be in the form of a game re-
lated command (move, attack, etc.). The Socko server then forwards these net-
work messages to a NetworkMessagelnterpreterSupervisor, in preparation to
be interpreted and then queued for processing.

2.2.4 Database

Ayaiemploys a lightweight flat-file Java Database engine called H2. The Database
stores user credentials and various portions of dynamic game state, such as maps,
inventories, character skills, locations, and experience. Various systems of the

game store dynamic portions of the game state to the database at an infrequent

rate (approximately once per 10 seconds). The entity factories retrieve this in-

formation when a character logs in.

2.3 Network Message Interpretation/Processing

The Network System Section((section 4)|describes the mechanics of the Network
Message system in further detail. The Socko server receives network messages
that need to be interpreted for meaning and content before being processed.
The NetworkMessagelnterpreterSupervisor has a thread pool of NetworkMes-
sagelnterpreters, each of which understands a message received and places a

game command into the NetworkMessageQueue. At each game tick, the Net-
workMessageQueue is cleared and given to the NetworkMessageProcessorSu-
pervisor for processing.

2.4 Game State

The game state in Ayai is represented as an Entity Component System, which
stores, manages, and processes game state. Worlds separate players by in-game
locality and stores data as entities with components.

2.5 Systems

Systems are then in charge of processing changes and game logic, applying these
changes to the relevant components. Systems are placed on tiers, so that higher
tiers must complete before a lower tier starts to process.

2.5.1 AlSystem

The Al System processes new information about the world and makes appropri-
ate decisions related to the artificial intelligence of entities and the game itself.
This includes low level decision making, such as movement and attacking for spe-
cific non player characters, to high level decision making, such as the creation of
guests, enemies, and other necessary game entities.

2.5.2 NetworkSystem

At the lowest tier exists the NetworkSystem, which serializes the game state,
calculates messages to return back to players, and sends messages back over the
WebSocket connection to the frontend.

3 Detailed Design
3.1 ECS Game Loop

This section defines the ECS system and the main backend driver (called a Game
Loop). These properties go into detail about the workings of the main loop of the
system. The ECS system is a small system that consists of three main properties
which are the Systems, Entities, and Components.

Wiarld

+ erililies- ArrayBulleEnity] = new
ArrayBuftar

+ delated : AmaySular[Entity]

+ ackded © ArayButer|Entity]

System

+ gygtems | HazhMap(int,
ArayButtar[Entity]] = new
ConcurrertHashiap]Sting,
ArrayBuliarEnity]]

+ getEntityBy Tag(tag ; String) ©
OpticaStiirg]
+geEntityByCompanents{component Types
i

+gelEntilie=WilhE xchesons]include :
List]T], exchide - LisT]) - Lisi)
HREIGIUpgoup | String)
ArrayEufiar|Entity]
+registerEntity ToGroup(entit
roup: String): ArayBuster[Entity]
eieateGoup(graun: String)
+adkEntity{entity : Entity, secand
Boolear)

+ackdSystem{systam Systam, ter In=0)
+remaveEnity{anity: Enbity}

+ chearueues()

+ process

Entity

+ 1) © Strifig

+wearkd - workd

+ alive: Boolean = true
+ companenis

sl Siring

+ getCompaneni(campanantType : T)
Optien[Comparer]

+warkl_{world ; Weeld)

+ removeComponentjcomponentType . T}
v ki)

——

+worid : Warkd

+ process (dells - Inf)

TemedSysiem

= millisecands - in

absiract class Component

+ inciude | ListT]
+ el - ListT)
+ process Time(deka - int)
* owvarmice process(deia - Ity + processEntiy(e - Entity. deka - int)
+ overide processidela : int)
IntenalSystem
4 e it
+ courier - Int

+ owarniche processideia -
+ procesintervalideta - inf

Int)

Figure 3: engine diagram

3.1.1 World

World

+ entities:ArrayBuffer[Entity] = new
ArrayBuffer

+ deleted : ArrayBuffer[Entity]

+ added : ArrayBuffer[Entity]

+ systems : HashMap[int,
ArrayBuffer[Entity]] = new
ConcurrentHashMap[String,
ArrayBuffer[Entity]]

+ getEntityByTag(tag : String) :
Option[String]
+getEntityByComponents|T:
AnyRef](componentTypes : T*) :
List[Entity]
+getEntitiesWithExclusions|[T:
AnyRef](include : List[T], exclude : List[T])
- List()

+getGroup(group : String) :
ArrayBuffer[Entity]
+registerEntityToGroup(entity: Entity,
group: String): ArrayBuffer[Entity]
+createGroup(group: String)
+addEntity(entity : Entity, second :
Boolean)

+addSystem(system:System, tier: Int=0)
+removeEntity(entity: Entity)

+ clearQueues()

+ process

\ J

Figure 4: World Class Diagram

A World holds all entities, systems and processes and filters entity information

Attributes

10

Name

Type

Description

entities

ArrayBuffer[Entity]

Holds all known entities in a
list

systems

ArrayBuffer[System]

Holds all systems added to
the world

deleted

ArrayBuffer[Entity]

Holds all entities that are
primed for deletion, but can-
not be removed until after
system process

added

ArrayBuffer[Entity]

Holds all entities that are
primed for addition to enti-
ties, but cannot be added to
main list until system process

is finished.

Operations

Operation: getEntityByTag(tag : String) : Option[String]
Input : Tag - the unique tag of the entity
Output : Returns an option for an entity
Description : Finds an entity with a given tag and returns option on it.

Operation: getEntityByComponents(componentTypes : T*) : List[Entity]
Input : ComponentTypes: T - a list of types of component classes
Output : Returns alist of entities
Description : Takes a list of component types and returns a list of entities which
have all the given components

Operation: getEntitiesWithExclusions(include : List(T), exclude : List(T)) :
List[Entity]
Input : Include : List(T) - a list of types of component classes you want to find
exclude : List(T) - a list of types you want to exclude from the find
Output : Returns alist of entities
Description : Takes a list of component types you want to search for in entities
and a list of component types you do not want an Entity to have and returns a list
of entities which match.

Operation: getGroup(group : String) : ArrayBuffer[String]
Input : Group : String - a group name
Output : List of Entities
Description : Returns list of entities that are matched to group

Operation: registerEntityToGroup(entity : Entity, group : String) : Array-

Buffer[Entity]
Input : entity : Entity - an entity to add

11

group : String - group to add to
Output : The group you are adding to
Description : Adds an entity to a group and returns that group

Operation: addEntity(e : Entity, second : Boolean)
Input : e : Entity - entity to add to world
second : Boolean - did this get called from entity itself
Output : None
Description : Add entity to world

Operation: createEntity(tag: String) : Entity
Input : tag: String - tag which to identify item
Output : Entity which is created
Description : Create and return a new entity, not added to world

Operation: addSystem(system : System)
Input : system : System - The system to add to world and processing cycle
Output : None
Description : Adds systems to the world systems list and is included in next pro-
cess cycle

Operation: process()
Input : None
Output : None
Description : Runs process() on all systems that are included in the world

3.1.2 Entity

Entity

+ tag: String

+ world: World

+ alive: Boolean = true

+ components: ArrayBufferfComponent]
+ uuid: String

+ getComponent(componentType: T):

Option[Component]

+ removeComponent(componentType: T)
+ kill()

Figure 5: Entity Class Diagram

12

An Entity holds all data (Components) needed to be processed by a system for a
specific function (characters, items, enemies).

Attributes
Name Type Description
tag String Unique tag to look for entity
world World World which Entity belongs
to
alive Boolean Is an entity alive or dead
Components ArrayBuffer[Component] List of components
uuid String Unique id for character
Operations

Operation: getComponent(componentType : T) : Option[Component]
Input : ComponentType : T - classOf component to find
Output : Returns an option for the component
Description : Searches for a component in the list, and returns an option on it

Operation: removeComponent(componentType: T)
Input : ComponentTypes: T - classOf Component to find

Output : None

Description : Takes a component type and removes it from list of components

Operation: kill()
Input : None
Output : None

Description : Removes entity from the world it is apart of.

13

3.1.3 System

System

+ world : World

+ process (delta : Int)

Figure 6: System Class Diagram

Systems are the framework’s way of processing and manipulating data. Overrid-
ing the process function allows for the system to do work on the list of entities it
uses.

Attributes

Name Type Description

world World The world it is a member of
Operations

Operation: process(delta : Int)
Input : delta: Int - The time difference from the last frame
Output : None
Description : Abstract defined function needing to be overwritten

14

3.1.4 EntityProcessingSystem

EntityProcessingSystem

+ include : List[T]
+ exclude : List[T]

+ processEntity(e : Entity, delta : int)
+ override process(delta : Int)

Figure 7: System Class Diagram

An EntityProcessingSystem inherits from System and allows for users to manip-
ulate one Entity at a time. Also includes list inputs to exclude and include certain

components.
Attributes
Name Type Description
include ListfComponent] List of components which
are used for filtering in the
needed components
exclude ListfComponent] List of components which
are used for filtering out un-
needed components
Operations

Operation: process(delta : Int)
Input : delta: Int - The time difference from the last frame

Output : None

Description : Calls processEntity and filters the list of entities

Operation: processEntity(entity : Entity, delta : Int)
Input : delta: Int - The time difference from the last frame

entity : Entity - the filtered entity needed for processing Output : None
Description : Calls entities one by one and processes the information based on

implementation

15

3.1.5 TimedSystem

TimedSystem

+ milliseconds : Int

+ processTime(delta : int)
+ override process(delta : Int)

Figure 8: Timed System Class Diagram

A TimedSystem only runs after the amount of time given to it. Used for process-
ing that needs to be done on a timed interval.

Attributes
Name Type Description
milliSeconds Int Amount of time that must
pass before system pro-
cesses again
start Int The time when the system
started counting for next run
Operations

Operation: process(delta : Int)

Input : delta: Int - The time difference from the last frame

Output : None

Description : Calls processTime and checks to see if enough time has passed

Operation: processTime(delta: Int)

Input : delta: Int - The time difference from the last frame

entity : Entity - the filtered entity needed for processing Output : None
Description: Is called after certain amount of time given by milliseconds.

16

3.1.6 IntervalSystem

IntervalSystem

+ count: Int
+ counter: Int

+ processinterval(delta: Int)

Figure 9: System Class Diagram

A IntervalSystem only runs after a certain amount of frames has passed. Used

for processing that needs to be done on a frame interval.

Attributes
Name Type Description
count Int The amount of frames that
must pass before the system
processes again
counter Int The current amount of
frames that have been
passed since the last run
Operations

Operation: process(delta : Int)

Input : delta: Int - The time difference from the last frame

Output : None

Description: Calls processinterval and checks to see if enough frames have passed

Operation: processinterval(delta: Int)

Input : delta: Int - The time difference from the last frame

entity : Entity - the filtered entity needed for processing Output : None
Description : Is called after certain amount of frames have been passed.

17

3.1.7 Component

abstract class Component

Figure 10: Component Class Diagram

Component is an empty class, but is used as an identifier for grouping data to-
gether.

3.1.8 Game Loop

Gameloop

+ roomHash : HashMap[Long, Entity]
- log : LoggerFactory.getLogger(getClass)
+ running : Boolean

+ main(args : Array[String]

Figure 11: The Game Loop

18

Gameloop.scala is the main driver of the Ayai framework. It loads in all Con-
stants, maps, and compiles the rooms together, and sets all worlds with the ap-
propriate systems and information.

Attributes
Name Type Description
roomHash HashMap[Long, Entity] A map of the roomld to the
RoomEntity and its Map in-
formation components
log Logger A logger which allows for
printing to a log file
running Boolean Is the main loop still running
Operations

Operation: main
Input : None
Output : None
Description : Sets up the worlds needed to run the game, sets up all network con-
nections, and loads all rooms from files.

3.2 Components

Components are aspects of entites. An entity is comprised of one or more com-
ponents which specify behaviors that the entity might have. For example a player
entity would be comprised of a position, bounds, health, inventory, mana, and
character component.

19

Component

Inventory

Loot

+inventory: ArrayBuffer(tem]

+asJson(): JObject
+additem(itemToAdd: Item)

+ removeltem(itemToRemove: Item)

+ hasltem(itemToCheck: Item): Boolean
+getltem(itemLocation: Int): ltem
+totalWeight(): Double

Actionable ‘Attack Goal
+ active: Boolean + nitiator: Entity +position: Position
+action: Action + goal: Intent
Bounds Character Health
+width - Int +id: String +currentHealth: Int
+height - Int + name: Stiing +maximumHealth: Int
- maxModifiers: ArrayBuffer{Effect]
+asJson(): JObject - currentCached: Int
- maxCached: Int
+isAlive: Boolean
Cooldown Equipment

+ startTime: Long
+length: Long

+ equipmentMap: HashMaplString, ltem]

+asJson(): JObject
+isReady(): Boolean

+asJson(): JObject
+equipltem(item: Item): Boolean
Item, slot: String):

+
Boolean
+ i Type: String):

Experience

Item

+ baseExperience: Long
+level: Int

+modifiers: ArrayBuffer(Effect]
+cachedValue: Int

+asJson(): JObject
+addDamage(damage: Float)

+looter: Strin
+typename: String

+asJson(): JObject
+isLootable(id: String): Boolean

Mana

+ currentMana: Int
+maximumMana: Int

Frame

+asJson(): JObject
+updateCachedValue()

+getvalue(): Int
+addEffect(effect:Effect)
+levelUp(experience Threshold: Long):
Boolean

+framesActive: Int
+ frameCounts: Int

+isReady(): Boolean

Position

Quest

+x:Int
+y:int

+id: Int

+title: String

+description: String
+recommend_evel: Int
+objectives: List[KillObjective]

+asJson(): JObject

loat)

+refilly ItemUse
+ updateCachedValue() :Rﬁfx‘"g:ﬁi df*l’;?VE“"e'[E"ec‘]
+ updateMaxValue() — :
+ updateCurrentvalue() Sremem - maxCached:int
M ge‘c“”eti‘l‘va"‘_eo: L +target: Entity +asJson(): JObject
+ getMaxValue(): Int P \
N + updateCachedvalue()
NPC +

+ updateCurrentValue()
T + getCurrentvalue(): Int

+ getMaxValue(): Int

+ addEffect(effect: Effect)

NetworkingActor
+actor: ActorSelection
TileMap

QuestBag

+quests: ArrayBuffer[Quest]

+array: Array[Array{Tile]]
+listOfTransport: List[Transportinfo]
+tilesSets: TileSets

+width: Int

+height: Int

+tileSize: Int = 32

+asJson(): JObject

+asJson(): JObject

Respawn

+time: Int
+delta: Long

n
+getTileByPosition(position: Position): Tile

+onTileCollision(position: Position): Boolean
+ checkifTransport(characterPosition: Position):

+isPositioninBounds(position: Position): Position

Stats
+addQ Add: Quest) +getMaximumHeight: Int

+ stats: ArrayBuffer[Stat] + Int
+asJson(): JObject
+ P
String)
+getValueByAtribute(attributeType: Transport
String) Velocity

+xSpeed: Int

+ySpeed: int

+isReady(): Boolean

Stat

Transport

+ startPosition: Position
+toRoom: RoomWorld

+attributeType: String
+magnitude: Int
+cachedValue: Int =0
+modifiers: ArrayBuffer([Effect]

+asJson(): JObject
+updateCachedValue()
+addEffect(effect: Effect)

+modifiers: ArrayBuffer[Effect]

+updateCachedValue()
+addEffect(effect: Effect)

Figure 12: All components inheriting from component

20

3.2.1 Position

Position

+ X Int
+vy: Int

+ asJson(): JObject

Figure 13: Position Class Diagram

Name Type Description

X Int The position on the x-
coordinate plane of the
entity

y Int The position on the vy-
coordinate plane of the
entity

3.2.2 Actionable

Actionable

+ active: Boolean
+ action: Action

Figure 14: Actionable Class Diagram

Name Type Description

active Boolean Isthe component in an active
state

action Action The action that the compo-
nent is doing

21

3.2.3 Attack

Attack

+ initiator: Entity

Figure 15: Attack Class Diagram

Name Type Description
initiator Int Who initiated the attack
victims ArrayBuffer[Entity] List of entities of who the at-
tack has collided with
3.2.4 Bounds
Bounds
+ width : Int
+ height : Int
Figure 16: Bounds Class Diagram
Name Type Description
width Int The total width of the bound-
ing box
height Int The total height of the
bounding box

22

3.2.5 Character

Character

+ id: String
+ name: String

+ asJson(): JObject

Figure 17: Character Class Diagram

Name Type Description
id String The unique string of the
character
name String The name of the character
3.2.6 Frame
Frame

+ framesActive: Int
+ frameCounts: Int

+ isReady(): Boolean

Figure 18: Frame Class Diagram

Name Type Description

framesActive Int The amount of frames that
must be passed to run again

frameCounts Int The current amount of
frames that have passed

23

3.2.7 Health

Health

+ currentHealth: Int

+ maximumHealth: Int

- currentModifiers: ArrayBuffer[Effect]
- maxModifiers: ArrayBuffer[Effect]

- currentCached: Int

- maxCached: Int

+ isAlive: Boolean

+ asJson(): JObject

+ addDamage(damage: Float)
+ refill()

+ updateCachedValue()

+ updateMaxValue()

+ updateCurrentValue()

+ getCurrentValue(): Int

+ getMaxValue(): Int

Figure 19: Health Class Diagram

Name Type Description

currentHealth Int The current value of health

maximumHealth Int The maximum amount of
health value

currentModifiers ArrayBuffer[Effect] The current effects that are
effecting the currentHealth
value

maxModifiers ArrayBuffer[Effect] The current effects that
are effecting the maxi-
mumHealth value

currentCached Int The value of currentHealth
with all effects calculated

maxCached Int The value of maxi-
mumHealth with all effects
calculated

isAlive Boolean Is current health less than
zero

Operation: addDamage(damage: Float)
Input: damage: Float - the amount of damage to subtract from the currentHealth

Output : None

Description : Calculate damage to subtract from currentHealth

24

Operation: refill()
Input : None
Output : None
Description : Sets the currentHealth to maximumHealth

Operation: updateCachedValue()
Input : None
Output : None
Description : Updates the cached values of both maximumHealth and currentHealth

Operation: updateMaxValue()
Input : None
Output : None
Description : Updates the cached values of maximumHealth by processing the
effects on the component

Operation: updateCurrentValue()
Input : None
Output : None
Description : Updates the cached values of currentHealth by processing the ef-
fects on the component

Operation: getCurrentValue()
Input : None
Output : Returns the cached value for currentHealth
Description : Returns the cached value for currentHealth

Operation: getMaxValue()
Input : None
Output : Returns the cached value for maximumHealth
Description : Returns the cached value for maximumHealth

25

3.2.8 Inventory

Inventory

+ inventory: ArrayBuffer[ltem]

+ asJson(): JObject

+ addltem(itemToAdd: Item)

+ removeltem(itemToRemove: Item)

+ hasltem(itemToCheck: Item): Boolean
+ getltem(itemLocation: Int): Item

+ totalWeight(): Double

Figure 20: Inventory Class Diagram

Name Type

Description

inventory ArrayBuffer[ltem]

Alist of items

Operation: addItem(itemToAdd: Item)
Input : Item to add to inventory list
Output : None
Description : Adds Item to inventory

Operation: removeltem(itemToRemove: Item)
Input : Item to remove from inventory list
Output : None
Description : Removes Item from inventory

Operation: hasltem(itemToCheck: Item): Boolean
Input : Item to check in inventory list
Output : Returns if item exists in list
Description : Checks to see if given item exists in list

Operation: getltem(itemLocation: Int): Item
Input : The slot that the item exists in
Output : Returns the item
Description : Retrieves item from list

Operation: totalWeight(): Int
Input : None
Output : Returns total weight of inventory
Description : Returns the weight of all items in inventory

26

3.2.9 Velocity

Velocity

+ xSpeed: Int
+ ySpeed: int
+ modifiers: ArrayBuffer[Effect]

+ updateCachedValue()

+ addEffect(effect: Effect)

Figure 21: Velocity Class Diagram

Name Type Description

xSpeed Int Speed in the xDirection

ySpeed Int Speed of the y direction

modifiers ArrayBuffer[Effect] The current effects that are
effecting both speed values

Operation: addEffect(effect: Effect)
Input : effect: Effect - the effect to add

Output : None

Description : Adds effect to modifiers

Operation: updateCachedValue()

Input : None
Output : None

Description : Updates the cached value

3.2.10 Time

Time

+ msActive: Int
+ startTime: Long

\

+ isReady(endTime): Boolean

Figure 22: Time Class Diagram

27

Name Type Description
msActive Int The amount of msSeconds
until the component is acti-
vated
startTime Long The time of last frame ending
3.2.11 Mana
Mana
+ currentMana: Int
+ maximumMana: Int
- currentModifiers: ArrayBuffer[Effect]
- maxModifiers: ArrayBuffer[Effect]
- currentCached: Int
- maxCached: Int
+ asJson(): JObject
+ addDamage(damage: Float)
+ updateCachedValue()
+ updateMaxValue()
+ updateCurrentValue()
+ getCurrentValue(): Int
+ getMaxValue(): Int
+ addEffect(effect: Effect)
Figure 23: Mana Class Diagram
Name Type Description
currentMana Int The current value of health
maximumMana Int The maximum amount of
health value
currentModifiers ArrayBuffer[Effect] The current effects that are
effecting the currentMana
value
maxModifiers ArrayBuffer[Effect] The current effects that are
effecting the maximumMana
value
currentCached Int The value of currentMana
with all effects calculated
maxCached Int The value of maximumMana
with all effects calculated
isAlive Boolean Is current health less than
zero

28

Operation: addDamage(damage: Float)
Input : damage: Float - the amount of damage to subtract from the currentMana
Output : None
Description : Calculate damage to subtract from currentMana

Operation: updateCachedValue()
Input : None
Output : None
Description : Updates the cached values of both maximumMana and current-
Mana

Operation: updateMaxValue()
Input : None
Output : None
Description : Updates the cached values of maximumMana by processing the ef-
fects on the component

Operation: updateCurrentValue()
Input : None
Output : None
Description : Updates the cached values of currentMana by processing the ef-
fects on the component

Operation: getCurrentValue()
Input : None
Output : Returns the cached value for currentMana
Description : Returns the cached value for currentMana

Operation: getMaxValue()
Input : None
Output : Returns the cached value for maximumMana
Description : Returns the cached value for maximumMana

Operation: addEffect(effect: Effect)
Input : effect: Effect - the effect to add
Output : None
Description : Adds effect to modifiers (modifier depends on type in effectType)

29

3.2.12 Stats

Stats

+ stats: ArrayBuffer[Stat]

+ asJson(): JObject

+ getAttributeByType(attribute Type:
String)

+ getValueByAttribute(attribute Type:
String)

Figure 24: Stats Class Diagram

Name Type Description
stats ArrayBuffer[Stat] List of stats
Operation: updateCachedValue()
Input : None

Output : None
Description : Updates the cached values of all stored stats

Operation: getValueByAttribute(attributeType: String): Int
Input : Based on attribute type return the value
Output : Returns the current cached value of the given attribute
Description : Returns the current cached value of the given attribute

3.2.13 Stat

Stat

+ attributeType: String

+ magnitude: Int

+ cachedVvalue: Int =0

+ modifiers: ArrayBuffer[Effect]

+ asJson(): JObject
+ updateCachedValue()
+ addEffect(effect; Effect)

Figure 25: Stat Class Diagram

30

Name Type Description

attributeType String The string of an attribute

magnitude Int Current value of attribute

cachedValue Int Current cached value of at-
tribute

modifiers ArrayBuffer[Effect] The current effects that are
effecting the stat

Operation: updateCachedValue()

Input : None
Output : None

Description : Updates the cached value of the stat by processing the effects on

the component

Operation: addEffect(effect: Effect)
Input : effect: Effect - the effect to add

Output : None

Description : Adds effect to modifiers (modifier depends on type in effectType)

3.2.14 Transport

Transport

+ startPosition: Position
+ toRoom: RoomWorld

Figure 26: Transport Class Diagram

Name Type Description

toRoom Room Specifies the room to which
to transport

startPosition Position Specifies the position in to-
Room

31

3.2.15 NetworkingActor

NetworkingActor

+ actor: ActorSelection

Figure 27: Networking Actor Class Diagram

Name

Type

Description

actor

ActorSelection

The connectionto thereceiv-
ing player

3.2.16 Respawn

Respawn

+ time: Int

+ delta: Long

+ isReady(): Boolean

Figure 28: Respawn Class Diagram

Name Type Description

time Int Defaulted to 1500 ms, and
is the amount of time until
player can respawn

delta Long The time that a player died

32

3.2.17 TileMap

TileMap

+ array: Array[Array[Tile]]

+ listOfTransport: List[Transportinfo]
+ tilesSets: TileSets

+ width: Int

+ height: Int

+ tileSize: Int =32

+ getMaximumHeight: Int

+ getMaximumWidth: Int

+ getTileByPosition(position: Position): Tile

+ isPositioninBounds(position: Position): Position
+ onTileCollision(position: Position): Boolean

+ checklfTransport(characterPosition: Position):
Transport

Figure 29: TileMap Class Diagram

Name Type Description

array Array[Array[Tile]] 2 Dimensional Array of tiles

listOf Transport List[Transportinfo] A list of transport locations
onamap

tileSets TileSets Alist of tileset files

file String the JSON file that represents
the map

width Int the width of tiles of map

height Int the height of tiles of map

tileSize Int number of pixels of an indiv-
dual tile

Operations

Operation: getMaximumHeight() : Int

Input : None

Output : Number of pixels in height
Description : Returns the height multiplied by the tileSize to get the number of

pixels in the y-axis

Operation: getMaximumWidth() : Int

Input : None

Output : Number of pixels in width
Description : Returns the width multiplied by the tileSize to get the number of

pixels in the x-axis

33

Operation: getTileByPosition(position : Position) : Tile
Input : position : Position - the position to convert to tile
Output : The tile referenced by position
Description : Returns the tile that is in the area of the given position

Operation: valueToTile(value: Int) : Int
Input : a pixel location
Output : the value divided by tileSize
Description : Returns the value given divided by tileSize

Operation: isPositionInBounds(position : Position) : Position
Input : position : Position - the position to check
Output : returns new position, if old value was not valid
Description : Given a position, checks to see if tile location is not valid, and re-
turns a valid position

Operation: onTileCollision(position : Position) : Boolean
Input : position : Position - the position to check
Output : returns true/false if position is on unwalkable tile
Description : Given a position, checks to see if tile location is valid

Operation: checklfTransport(characterPosition : Position) : Transport
Input : characterPosition : Position - the position to check
Output : Returns a transport object if tile is a transport tile
Description : Given a position, checks to see if tile location is a transportable tile
and returns the information

3.2.18 ItemUse

ItemUse

+ initiator; Entity
+ item: Item
+ target: Entity

+ getlitemEffects(): ArrayBuffer[Effect]

. J

Figure 30: ItemUse Class Diagram

The ItemUse component is acted upon by the ItemSystem and is used to convey
information about when items are used by a player.

34

Name Type Description
initiator Entity What entity used the item
item Item the item that was used
target Entity What entity was targeted by
the initiator
Operations

Operation: getltemEffects() : ArrayBuffer[Effect

Input : None

Output : The list of effects on an item
Description : Returns the list of effects that an item has on them (would be pro-
cessed by the ItemSystem)

3.2.19 Experience

Experience

+ baseExperience: Long

+ level: Int

+ modifiers: ArrayBuffer[Effect]
+ cachedValue: Int

+ asJson(): JObject

+ updateCachedValue()

+ getValue(): Int

+ addEffect(effect:Effect)

+ levelUp(experienceThreshold: Long):
Boolean

Figure 31: Experience Class Diagram

Experience is gained from when players complete tasks or kill enemies. When a
player gains enough experience then they can level up and adds more power to

their stats.
Name Type Description
baseExperience Long The total amount of experi-
ence
level Int Current level of entity
modifiers ArrayBuffer[Effect] The current effects that are
effecting baseExperience

Operation: updateCachedValue()

Input : None

35

Output : None

Description : Updates the cached value of experience

Operation: getValue(): Int
Input : None

Output : Returns the cached value for experience
Description : Returns the cached value for experience

Operation: levelUp(experienceThreshold: Long): Boolean

Input : The threshold for the next level
Output : Returns if the player has leveledUp
Description : Checks to see if the players baseExperience is higher than the ex-

perience threshold of the next level

Operation: addEffect(effect: Effect)
Input : effect: Effect - the effect to add

Output : None

Description : Adds effect to modifiers (modifier depends on type in effectType)

3.2.20 Cooldown

Cooldown

+ startTime: Lon
+ length: Long

g

+ asJson(): JObject
+ isReady(): Boolean

Figure 32: Cooldown Class Diagram

Keeps a time to see if a player can perform another action. If the cooldown is
active then a player cannot do an action such as attack or use an item. Is acted up

by the cooldown system.

Name Type Description

startTime Long The start time when the
cooldown was set

length Long Length in seconds for how
long cooldown will last

Operation: isReady(): Boolean
Input : None

Output : Returns if enough time has passed

36

Description : Returns to see if enough time has passed and cooldown is down

3.2.21 Quest

Experience

+ baseExperience: Long

+ level: Int

+ modifiers: ArrayBuffer[Effect]
+ cachedValue: Int

+ asJson(): JObject

+ updateCachedValue()

+ getValue(): Int

+ addEffect(effect:Effect)

+ levelUp(experienceThreshold: Long):
Boolean

Figure 33: Experience Class Diagram

Information about quests and objectives to complete in the game (is not a com-
ponent, but is used with quest bag)

Name Type Description

id Int The quest id

title String Title of the quest

description String The description and details
of the quest

recommendLevel Int The recommended level that
a player should be to do the
quest

objectives List[KillObjective] The objectives to complete
the quest

Operation: isReady(): Boolean

Input : None

Output : Returns if enough time has passed
Description : Returns to see if enough time has passed and cooldown is down

37

3.2.22 QuestBag

QuestBag

+ quests: ArrayBuffer[Quest]

+ asJson(): JObject
+ addQuest(questToAdd: Quest)

Is a component that holds information about a players held quests

Figure 34: QuestBag Class Diagram

Name

Type

Description

quests

ArrayBuffer[Quest]

An entities held quests

Operation: addQuest(questToAdd: Quest)
Input : The quest to add to quests list

Output : None
Description : Adds

quest to quests list

3.2.23 Equipment

Equipment

+ equipmentMap: HashMap[String, Item]

+ asJson(): JObject

+ equipltem(item: Item): Boolean

+ equipltem(item: Item, slot: String):
Boolean

+ unequipltem(equipmentType: String):
ltem

Figure 35: Equipment Class Diagram

The players equipment is what allows them to greatly increase their stats by pro-
viding the ability to equip weapons and armor.

Name

Type

Description

equipmentMap HashMap[String, Item]

Maps an item slot to an item

Operation: equipltem(item: Item): Boolean
Input : The item to equip

38

Output : Returns if the equip was successful
Description : Tries to equip an item based on the items information, will return
false if failed

Operation: equipltem(item: Item, slot: String): Boolean
Input : The item to equip and the slot to equip to
Output : Returns if the equip was successful
Description : Tries to equip an item based on the slot given, will return false if
failed

Operation: equipltem(equipmentType: String): Item
Input : The slot to unequip from
Output : Returns the item that was unequiped
Description: Tries to unequip an item based on the slot given, will return the item
that was in the slot

39

3.3 Items

Items are used throughout the game as potentially quest items, weapons, armor,
or consumables (potions, mana potions, and stat increases or descreases)

Item

+id: Long

+ name: String

+ value: Int

+ weight: Double
+itemType: ItemType

+ effects: ArrayBuffer[Effect]

trait ltemType
+ asJson(): JObject

+ asJson(): JObject

7

Weapon Armor

+ range: Int
+damage: Int

+ damageType: String
+ itemType: String

+ slot: String
+ protection: Int
+ itemType: String

Figure 36: Items

40

3.3.1 Item

Item

+id: Long

+ name: String

+ value: Int

+ weight: Double

+ itemType: ItemType

+ effects: ArrayBuffer[Effect]

+ asJson(): JObject

Figure 37: Item Class Diagram

Item is a class that holds all information about an item including its effects and
descriptions. When an item is used it can either be equiped by a player (based on
item type) or be used by a player to perform an action.

Attributes

Name Type Description

id Long the itemid

name String The name of the item

value Int The value that the item
will use when consumed or
equipped

weight Double The weight of the item

itemType ItemType Additional information
about an item such as
weapon or armor.

effects ArrayBuffer[Effect] The effects that an item will
do when used or equipped

41

3.3.2 ItemType

trait ltemType

+ asJson(): JObject

Figure 38: ItemType Class Diagram

ItemType is an abstract class that can be extended to hold additional information
for items. Also contains asJson function export information from needed class.

3.3.3 Weapon

1
Weapon

+ range: Int

+ damage: Int

+ damageType: String
+ itemType: String

Figure 39: Weapon Class Diagram

A weapon can be equipped in the weapon1 or weapon2 equipment slots. Raises
a players offensive stats.
Attributes

42

Name Type Description

range Int the number of pixels the at-
tack can be extended

damage Int The amount of damage the
attack will do

damageType String The type of damage the
weapon will inflict (only
physical)

itemType String The slot that it will be
equipped onto (weapon1l or
weapon2)

3.3.4 Weapon
1
Armor

+ slot: String
+ protection: Int
+ itemType: String

Figure 40: Armor Class Diagram

Anarmor can be equipped in the head, torso, legs, or feet equipment slots. Raises
a players defensive stats.

Attributes

Name Type Description

slot String The slot that will be equipped
to

damage Int The amount of protection
that will raise the defense
stat

itemType String The slot that it will be
equipped to

43

3.4 Systems

Systemes, as described in Section 3.1.3, are used to manipulate component data.

Movement System CollisionSystem
-log : Logger
-log : Logger
+roomHash : HashMaplLong, Entity] + process(delta : Int)
+ handleCollision(entity A : Entity, entityB :
Entity)
+ handleAttack(attacker : Attack, attackee
" R . : Health)
+ processEntity(e : Entity, delta :Int) + valuelnRange(value : Int, min :int, max :
Int)
FrameExpirationSystem
HealthSystem
+ processEntity(e : Entity, delta :Int)
RespawningSystem + processEntity(e : Entity, delta :Int)
RoomChangingSystem
+ processEntity(e : Entity, delta :Int)
-log : Logger
NetworkingSystem + userRoomMap: ActorSelection
- log : Logger + processEntity(e : Entity, delta :Int)
+ timeout : Int
AlSystem
+ processTime(delta :Int)
AttackSystem + process(delta: Int)
+ getScore(current : Position, goal : Position)
+ actorSystem: ActorSystem + findClosest(entity: Entity, possibles: List[Entity])
-log : Logger + findDirection(entity: Entity, target: Entity)
+ processEntity(entity: Entity, deltaTime:
Int)
" " CooldownSysts
+ getWeaponStat(entityget: Entity): Int ooldownsystem
+ getArmorStat(entity: Entity): Int
+ getDamage(initiatior: Entity, victim:
Entity) "
+ processEntity(e : Entity, delta :Int)
LevelingSystem
ItemSystem
+ actorSystem: ActorSystem
y " " N + processEntity(e : Entity, delta :Int)
:‘S’OCQSSE”‘"V(E”"‘V Entity, deltaTime: + addEffect(entity: Entity, effect: Effect)

NPCRespawningSystem
StatusEffectSystem

+ actorSystem: ActorSystem
+ actorSystem: ActorSystem

+ timeout: Timeout

+ processEntity(entity: Entity, deltaTime:
+ processEntity(entity: Entity, deltaTime: Int)
Int)

Figure 41: Systems

a4

3.4.1 MovementSystem

Movement System

- log : Logger
+ roomHash : HashMap[Long, Entity]

+ processEntity(e : Entity, delta :Int)

Figure 42: MovementSystem Class Diagram

The movement system inherits the EntityProcessingSystem and requires an En-
tity to have the Position, Velocity, Actionable, and Character components.

Attributes
Name Type Description
roomHash HashMap[Long, Entity] A map of the roomld to the
RoomEntity and its Map in-
formation components
log Logger A logger which allows for
printing to alog file
Operations

Operation: processEntity(e : Entity, delta: Int)

Input : e : Entity - entity which posseses the necessary components

delta: Int - time difference from last frame

Output : None

Description : Checks to see if the player is moving, then retrieves the room the
player is in, and then checks to see if the position the player is in is valid and then
attaches transport component to entity.

45

3.4.2 CollisionSystem

CollisionSystem

- log : Logger

\

+ process(delta : Int)

+ handleCollision(entity A : Entity, entityB :
Entity)

+ handleAttack(attacker : Attack, attackee
: Health)

+ valuelnRange(value : Int, min :int, max :
Int)

Figure 43: Collision System Class Diagram

The collision system inherits from the normal System class and goes through
each ROOM to gather its entities and uses QuadTrees to find entities which it
may interact with. After finding eligible items it does collision detection and does
the required actions (whether if an attack is colliding, or two players touching).

Attributes
Name Type Description
log Logger A logger which allows for
printing to alog file
Operations

Operation: process(delta : Int)
Input : delta: Int - time difference from last frame

Output : None

Description : Puts all room entities in quadtree, then retrieves each section of
quadtree and runs collision detection.

Operation: handleCollision(entityA : Entity, entityB: Entity)

Input : entityA : Entity - first entity for collision checking
entityB : Entity - second entity for collision checking

Output : None

Description : Checks to see if the two entities overlap

Operation: handleCollision(attacker : Attack, attackee : Health)

Input : attacker : Attack - attack component which calculates damage done to

attackees health

46

attackee : Health - health of victim, which damage is reduced from

Output : None

Description : Handles damage calculation of colliding attack and character enti-
ties

Operation: valuelnRange(value : Int, min : Int, max :Int) : Boolean
Input : value : Int - value to see if between min and max
min : Int - Bounds in which value must be greater than
max :Int - Bounds in which value must be less
Output : Detects if given components are in range of each other
Description : Checks to see if value given is between the min and max

Operation: excludeList(entities : List[Entity], exclusionList: List[T]) : List[Entity]
Input : entities : List[Entity] - list of entities
exclusionList : List[T] - list of components to exclude
Output : Returns the list of entities that do not contain components from exclu-
sionList
Description : Filters out exclusionList from list of entities

Operation: hasExclusion(entity : Entity, exclusionList : List[T]) : Boolean
Input : entity : Entity - entity to check
exclusionList : List[T] - list of components to exclude
Output : Returns if the entity contains any of the excluded components
Description : Checks entity components to see if it contains any components
from exclusion list

47

3.4.3 HealthSystem

HealthSystem

+ processEntity(e : Entity, delta :Int)

Figure 44: HealthSystem Class Diagram

Health System inherits from EntityProcessingSystem and checks Entity health
to see if it should be killed and removed from game.
Operations

Operation: processEntity(entity : Entity, delta : Int)
Input : entity : Entity - entity to process delta : Int - time difference from last
frame
Output : None
Description : Processes entity health

3.4.4 RespawningSystem

RespawningSystem

+ processEntity(e : Entity, delta :Int)

.

Figure 45: Respawning System Class Diagram

RespawningSystem inherits from EntityProcessingSystem and checks Entities
who are dead and respawns the characters.
Operations

48

Operation: processEntity(entity : Entity, delta: Int)
Input : entity : Entity - entity to process delta : Int - time difference from last
frame
Output : None
Description : Processes entity respawn

3.4.5 FrameExpirationSystem

FrameExpirationSystem

+ processEntity(e : Entity, delta :Int)

J

Figure 46: FrameExpirationSystem Class Diagram

FrameExpirationSystem inherits from EntityProcessingSystem and checks Enti-
ties that contain a Frame component and check to see if action is needed.

Operations

Operation: processEntity(entity : Entity, delta : Int)
Input : entity : Entity - entity to process delta : Int - time difference from last
frame
Output : None
Description : Processes entity and checks frame component

49

3.4.6 NetworkingSystem

NetworkingSystem

- log : Logger
+ timeout : Int

.

+ processTime(delta :Int)

Figure 47: NetworkingSystem Class Diagram

The networking system inherits the TimedSystem and after a certain amount of

time updates all game players.
Attributes

Name Type Description

roomHash HashMap[Long, Entity] A map of the roomld to the
RoomEntity and its Map in-
formation components

log Logger A logger which allows for
printing to a log file

timeout Int Time that a message has to
compile

Operations

Operation: processTime(delta: Int)
Input : delta: Int - time difference from last frame

Output : None

Description : Processes compiling of messages and sending of messages to play-

ers

50

3.4.7 NPCRespawningSystem

NPCRespawningSystem

+ actorSystem: ActorSystem

+ processEntity(entity: Entity, deltaTime:
Int)

Figure 48: NPCRespawningSystem Class Diagram

The NPCRespawningSystem is responsible for restoring any NPCs that need to
be respawned and which are designated as being able to respawn.

Attributes
Name Type Description
actorSystem ActorSystem Holds actors in game that al-
lows system to query for in-
formation
Operations

Operation: processEntity(delta : Int)
Input : delta: Int - time difference from last frame

Output : None
Description : Processes compiling of messages and sending of messages to play-

ers

51

3.4.8 LevelingSystem

LevelingSystem

+ actorSystem: ActorSystem

+ processEntity(entity: Entity, deltaTime:
Int)

Figure 49: LevelingSystem Class Diagram

The LevelingSystem is meant to calculate a players experience and determine if
levelup is needed.

Attributes
Name Type Description
actorSystem ActorSystem Holds actors in game that al-
lows system to query for in-
formation
Operations

Operation: processEntity(delta : Int)
Input : delta: Int - time difference from last frame
Output : None
Description : Processes compiling of messages and sending of messages to play-
ers

3.4.9 StatusEffectSystem

StatusEffectSystem

+ actorSystem: ActorSystem
+ timeout: Timeout

+ processEntity(entity: Entity, deltaTime:
Int)

Figure 50: StatusEffectSystem Class Diagram

52

The StatusEffectSystem is meant to calculate all status effects on a character
per cycle and determine if the effects shouls be removed and calculate all values
needed throughout the cycle.

Attributes
Name Type Description
actorSystem ActorSystem Holds actors in game that al-
lows system to query for in-
formation
Operations

Operation: processEntity(delta : Int)
Input : delta: Int - time difference from last frame

Output : None
Description : Processes compiling of messages and sending of messages to play-

ers

3.4.10 CooldownSystem

CooldownSystem

+ processEntity(e : Entity, delta :Int)

Figure 51: CooldownSystem Class Diagram

The cooldown system works with the cooldown component to stop players from
attacking or using items too quickly.

Attributes
Name Type Description
actorSystem ActorSystem Holds actors in game that al-
lows system to query for in-
formation
Operations

Operation: processEntity(delta : Int)
Input : delta: Int - time difference from last frame

Output : None
Description : Processes compiling of messages and sending of messages to play-

ers

53

3.4.11 ItemSystem

[temSystem

+ processEntity(e : Entity, delta :Int)

+ addEffect(entity: Entity, effect: Effect)

Figure 52: [temSystem Class Diagram

The ItemSystem checks to see if any items need to be processed on characters

Attributes
Name Type Description
actorSystem ActorSystem Holds actors in game that al-
lows system to query for in-
formation
Operations

Operation: processEntity(delta : Int)
Input : delta: Int - time difference from last frame

Output : None

Description : Processes compiling of messages and sending of messages to play-

ers

54

3.4.12 AttackSystem

AttackSystem

+ actorSystem: ActorSystem
- log : Logger

+ processEntity(entity: Entity, deltaTime:

Int)

+ getWeaponStat(entityget: Entity): Int

+ getArmorStat(entity: Entity): Int

+ getDamage(initiatior: Entity, victim:
Entity)

Figure 53: AttackSystem Class Diagram

The AttackSystem processes attack messages from the processors Attributes

Name Type Description
actorSystem ActorSystem Holds actors in game that al-
lows system to query for in-
formation
Operations

Operation: processEntity(delta : Int)
Input : delta: Int - time difference from last frame
Output : None
Description : Processes compiling of messages and sending of messages to play-
ers

Operation: getWeaponStat(entityGet: Entity)
Input : entity to get stat off of
Output : Outputs the total attack damage
Description : Processes all attack stats that a player has on them and compiles
them together

Operation: getArmorStat(entityGet: Entity)
Input : entity to get stats off of
Output : Outputs the total defensive value
Description : Processes all defensive stats that a player has on them and com-
piles them together

55

Operation: getDamage(initiator: Entity, victim: Entity)
Input : initiator - entity who initiated attack
victim - person who was attacked Output : None
Description : Processes both defensive and attack stats that a victim and initia-

tor have and compiles damage to receive on victim.

3.4.13 RoomChangingSystem

RoomChangingSystem

- log : Logger

+ userRoomMap: ActorSelection

.

+ processEntity(e : Entity, delta :Int)

Figure 54: RoomChangingSystem Class Diagram

The RoomChangingSystem inherits the EntityProcessingSystem and checks to
see that if an Entity contains a "Transport" component and changes the process-

ing entities room.

Attributes
Name Type Description
roomHash HashMap[Long, Entity] A map of the roomld to the
RoomEntity and its Map in-
formation components
log Logger A logger which allows for
printing to a log file
Operations

Operation: processEntity(entity : Entity, delta: Int)
Input : entity : Int - entity to process, delta: Int - time difference from last frame

Output : None

Description : Processes and sends all player messages

56

3.4.14 AlSystem

AlSystem

+ process(delta: Int)

+ getScore(current : Position, goal : Position)

+ findClosest(entity: Entity, possibles: List[Entity])
+ findDirection(entity: Entity, target: Entity)

Figure 55: AlSystem Class Diagram

The Al system inherits from the normal System and calculates all artificial intel-
ligence based decisions.
Operations

Operation: process(delta: Int)
Input : delta: Int - time difference from last frame
Output : None
Description : Calculates Al commands

Operation: getScore(current : Position, goal : Position)
Input : current : Position - current position of Al agent
Input : goal : Position - current position of target
Output : score: Int
Description : Calculates score based on distance from target

findClosest(entity: Entity, possibles: List[Entity])
Input : entity : Entity - Starting entity
Input : possibles : List[Entity]
Output : entity : Entity
Description : Returns closed entity to starting entity

findDirection(entity: Entity, target: Entity)
Input : entity : Entity - Starting entity
Input : target : Entity - Target entity
Output : MoveDirection
Description : Returns MoveDirection for entity to move towards target

57

3.5 Status Effects

Effect

+name: String

+ description: String

+ effectType: String
+value: Int

+ attribute: TimeAttribute
+ multiplier: Multiplier

+ isRelative: Boolean

+ isValueRelative: Boolean
+ effectiveValue: Int = 0

+ imageLocation: String =

Multiplier

+ process(value: Int): Int

+ initialize

+ process(effectValue: Int = 0): Int
+ updateValue(value: Int)
+isValid(): Boolean

+asJson(): JObject

abstract TimeAttribute

+ process(): Boolean
+ asJson(): JObject
+isReady(): Boolean
+initialize()

©

+isValid(): Boolean

EffectType

+ getType(): String
+asJson(): JObject

OneOff

+ timesUsed: Int=0

Duration

+timesProcessed: Int =0
+ startTime: Long = 0

+ currentTIme: Long = 0
+endTime: Long = 0

Timedinterval

+timesProcessed: Int =0
+ startTime: Long = 0

+ currentTime: Long = 0
+endTIime: Long =0
+interval: Long
+maxTIme: Long

+ operation1(params):returnType
- operation2(params)
- operation3()

Figure 56: Ayai Status Effect

58

The status effect system comprises of an Effect class that takes in a Multiplier,
EffectType string, and a Time Attribute. It can be used with 5 main components
(Health, Mana, Stats, Experience, and Velocity).

3.5.1 Effect

Effect

+ name: String

+ description: String

+ effectType: String

+ value: Int

+ attribute: TImeAttribute
+ multiplier: Multiplier

+ isRelative: Boolean

+ isValueRelative: Boolean
+ effectiveValue: Int =0

+ imageLocation: String =

+ initialize
+ process(effectValue: Int = 0): Int
+ updateValue(value: Int)
+ isValid(): Boolean
+ asJson(): JObject

Figure 57: Effect Class Diagram

The Effect class holds all information about an effect. Effects are used to change
statistics for a temporary time by being attached to an weapon or used on an
item.

Attributes

59

Name Type Description

name String Name of the effect

description String Description of the effect

effectType EffectType Information about the effect

value Int Value that effect will use

attribute TimeAttribute Details of how often effect
will run

isRelative Boolean Is the effect adding to the
current value of the effected
type (if false, the value will
change to an absolute value)

isValueRelative Boolean is computed value deter-
mined by the current value
of the type

effectiveValue Int The compiled value of the ef-

fect touse

Operations

Operation: process(effectValue: Int = 0)
Input : effectValue: Int - is defaulted to zero, but if the process is determined by
an outside value (such as current health) then that value needs to be given
Output : Returns the computed value
Description : Processes and updates the effective value for the cycle or effect

Operation: updateValue(value: Int)
Input : value: Int - the outside value used to process

Output : None

Description : Updates effective value

Operation: isValid()

Input : None

Output : If effect is still valid

Description : Checks to see if effect is still valid by testing time attribute

60

3.5.2 TimeAttribute

abstract TimeAttribute

+ process(): Boolean
+ asJson(): JObject
+ isReady(): Boolean
+ initialize()

+ isValid(): Boolean

7N

Figure 58: TimeAttribute Class Diagram

The TimeAttribute class is an abstract class that is used to determine how long
and how much an effect needs to run.
Operations

Operation: process()
Input : None
Output : Returns if the value has been changed
Description : Processes the updated values of the time

Operation: isReady()
Input : None
Output : Returns if effect is ready to run
Description : Returns if the effect is ready to run

Operation: initialize()
Input : None
Output : None
Description : Sets all values to initial settings

Operation: isValid()
Input : None
Output : Boolean
Description : Returns if the effect should be removed from the game or charac-
ter

61

3.5.3 OneOff

1

OneOff

+ timesUsed: Int=0

Figure 59: OneOff Class Diagram

The OneOff class is extended from the TimeAttribute and is meant to run the
effect immediately and only once. Once it has been run isValid and isReady will

be true and false, respectively.

Attributes
Name Type Description
timesUsed Int How many times has the ef-

fect been run

3.5.4 Timedinterval

TimedInterval

+ timesProcessed: Int =0
+ startTime: Long =0

+ currentTime: Long = 0
+ endTIime: Long =0

+ interval: Long

+ maxTIme: Long

L

- operation2(params)
- operation3()

.

+ operationl(params):.returnType

Figure 60: TimedInterval Class Diagram

The TimedInterval class is extended from the TimeAttribute and is meant to be

run at a set interval for a set amount of time.
Attributes

62

Name Type Description

timesProcessed Int How many times has the ef-
fect beenrun

startTime Long When was the effect initial-
ized

currentTime Long What is the currentTime

endTime Long When will the effect end

interval Int How many seconds should
the effect be processed (in
seconds)

maxTime Long How long should effect last
for (in seconds)

3.5.5 Duration

I
Duration

+timesProcessed: Int=0
+ startTime: Long = 0

+ currentTIme: Long =0
+ endTime: Long = 0

Figure 61: Duration Class Diagram

The Duration class is extended from the TimeAttribute and is meant to be run for
the length given. The effect is processed is meant to be run once, but is removed
once the time is up (meant for temporary stat increases)

Attributes

Name Type Description

timesProcessed Int How many times has the ef-
fect beenrun

startTime Long When was the effect initial-
ized

currentTime Long What is the currentTime

endTime Long When will the effect end

maxTime Long How long should effect last
for (in seconds)

63

3.5.6 Multiplier

Multiplier

+ process(value: Int): Int

Figure 62: Multiplier Class Diagram

The Multiplier class has an internal value which it will use to multiply with the
effects value to create the effects effective value. For example, if the multiplier
value is .5 and the effect wants to use current healths value, it will decrease the
value to half of what it was.

Attributes
Name Type Description
value Float The multiplier value to use
with the effect value
Operations

Operation: process(effectValue: Int = 0)
Input : effectValue: Int - the value to multiply
Output : Returns the multiplied value

Description : Multiplies the given value by the multiplier value

64

3.6 Movement Processes

trait Action

MoveDirection

+ xDirection : Int

c + yDirection : Int
+ process(e : Entity)
+ asJson() : JObject
LeftDirection RightDirection DownDirection UpDirection

+ xDirection : Int= -1
+ yDirection : Int=0

+ xDirection © Int= 1
+ yDirection : Int =0

+ xDirection : Int= 0
+ yDirection : Int = -1

+ xDirection : Int=0
+ yDirection : Int=1

&

<

&

ymEm—

UpLeftDirection

UpRightDirection

DownLeftDirection

DownRightDirection

+ xDirection : Int= -1
+ yDirection : Int=1

+ xDirection : Int=1
+ yDirection : Int=1

+ xDirection : Int = -1
+ yDirection : Int = -1

+ xDirection : Int=1
+ yDirection : Int= -1

Figure 63: Action System Diagram

Movement in the Ayai framework are based on an Action trait. These actions are
used for players and are currently only used to process Movements.

Movements consist of an X and Y direction and the process function moves
the entity in the needed direction.

3.6.1 Action

trait Action

+ process(e : Entity)
+ asJson() : JObject

Figure 64: Action Class Diagram
The action is a trait that has a process function and an asJson function. The pro-

cess function is used to process the given entity and asJson is to print out the
state of the action.

65

3.6.2 MovementDirection

MoveDirection

+ xDirection : Int
N + yDirection : Int

process(e : Entity)

Figure 65: MoveDirection Class Diagram

The movement direction consists of an X and Y direction and the process func-
tion of MovementDirection takes the X and Y direction and multiples the users
velocity component to move in the correct direction.

3.6.3 MovementDirection Case Classes

Figure 66: Case Classes MoveDirections Class Diagram

There are 8 states that the movement direction is allowed to be in. These case
classes have predefined X and Y directions and override the asJson method to
print out the correct state to the user.

These are 8 case classes are defined as:

o LeftDirection has an X direction of -1 and Y direction of O

RightDirection has an X direction of 1 and Y direction of O

UpDirection has an X direction of 0 and Y direction of 1

o DownDirection has an X direction of O and Y direction of -1

UpLeftDirection has an X direction of -1 and Y direction of 1

UpRightDirection has an X direction of 1 and Y direction of 1

66

e DownlLeftDirection has an X direction of -1 and Y direction of -1

e DownRightDirection has an X direction of 1 and Y direction of -1

3.7 Collision Objects
3.7.1 QuadTree

QuadTree

+ level : Int

+ bounds : Rectangle
-MAX_OBJECTS : Int=10
-MAX_LEVELS : Int=8

- objects : ArrayBuffer[Entity]
- nodes : Array[QuadTree]

+ clear()

- split()

- getindex(e : Entity) : Int

+ insert(e : Entity)

+ retrieve(e : Entity) : ArrayBuffer[Entity]

+ quadrants: ArrayBuffer[ArrayBuffer[Entity]]

Figure 67: QuadTree Class Diagram

Quadtrees are tree data structure that is used to find the entities that are most
likely to collide with each other. The QuadTree splits itself into four tree nodes
which themselves have four nodes. Once a certain amount of items have been
put into a node, it furthur splits itself up and divides those entities up. It allows
for users to detect entities without checking against each one and run a collision
detection algorithm on a smaller set of entities.

67

Name Type Description

level Int Depth of tree node

bounds Rectangle What bounds does this node
take care of

MAXOBJECTS Int The max number of objectsin
aquadtrees

MAXLEVELS Int The max depth of the
quadtree

objects ArrayBuffer[Entity] The list of objects the list
hold

nodes ArrayBuffer[QuadTree] The nodes of a quadtree

Operations

Operation: clear()

Input : None
Output : None

Description : Clear all nodes below

Operation: split()

Input : None
Output : None

Description : Creates four nodes on current quadtree

Operation: getindex(e : Entity) : Int
Input : e : Entity - entity to find index for

Output : Quadrant entity is in
Description : Finds the entity in the quadtree and returns quadtrant

Operation: insert(e : Entity)
Input : e : Entity - entity to insert

Output : None

Description: Inserts entity into quadtree

Operation: retrieve(e : Entity) : ArrayBuffer[Entity]
Input : e : Entity - the entity to check against

Output : ArrayBuffer of entities

Description : Using Entity, retrieves all entities in given entity quadtrant

68

3.7.2 Rectangle

Rectangle
+ X o Int
+vy:Int
+ width : Int
+ height : Int
+ getX : int
+ getY : Int

+ getWidth : Int
+ getHeight : Int

Figure 68: Rectangle Class Diagram

Name Type Description

X Int Top left corner location of
rectangle (x-axis)

y Int Top left corner location of
rectangle (y-axis)

width Int Width of Rectangle

height Int Height of Rectangle

69

3.8 Factories

ClassFactory

+ bootup(world: World)

+ buildStats(stats: Option[List[Stat]]):
Stats

+ getClassesList(path: String):
List[AllClassValues]

EntityFactory

+ attributel:type = defaultValue
+ attribute2:type
- attribute3:type

+ loadCharacter(world : World,
webSocket: WebSocketFrameEvent,
entityld: String, characterName: String, x
Int, y: Int, actor : ActorSelection)

+ createRoom(world : World, roomid : Int,

tileMap : TileMap)
+ loadRoomFromJson(world : World,
roomld : Int, jsonFile : String) : Entity

Case Class AllClassValues

+id : Int

+ name : String

+ baseHealth : Int

+ baseMana ; Int

+ baseStats : Option[List[Stat]]
+ statGrowths : Option[List[Stat]]

+ operationl(params).returnType
- operation2(params)
- operation3()

ItemFactory

+ bootup(world: World)

+ buildStats(item: AllitemValues): Stats
+ instantiateWeapons(world: World,
items: List[AllitemValues])

+ instantiateArmor(world: World, items:
List[AllitemValues])

+ addStats(item: Entity, stats: Stats)

+ getitemsList(path: String):
List[AlllitemValues]

Case Class AllltemValues

+id: Int

+ name: String,

+ equipable: Boolean,
+itemType: String,

+ value: Int,

+weight: Double,

+ range: Option[Int],

+ damage: Option[Int],

+ damageType: Option[String],
+ slot: Option[String],

+ protection: Option[Int],

+ stackable: Option[Boolean],
+ stats: Option[List[Stat]]

+ operationl(params):returnType
- operation2(params)
- operation3()

Figure 69: Factories

There are three factories that Ayai uses. The ItemFactory, ClassFactory, and En-
tityFactory and all are neeeded to fill in the information needed for the specific

70

type.

3.8.1 ClassFactory

ClassFactory

+ bootup(world: World)

+ buildStats(stats: Option[List[Stat]]):
Stats

+ getClassesList(path: String):
List[AllClassValues]

Figure 70: ClassFactory Class Diagram

ClassFactory is used on bootup to create all initial classes in the game and store
them in memory.
Operations

Operation: bootup(world : World)
Input : world : World - the world to store classes
Output : None
Description : Read all necessary input files and create Classes

Operation: buildStats(stats : Option[List(Stats)]) : Stats
Input : stats : Option[List(Stats)] - an option for returned stats
Output : Returns stats created
Description : Takes in an Option for Stats and returns the potential stats class

Operation: getClassesList(path : String) : List[AllClassValues]
Input : path : String - path to a classes file
Output : Returns alist of classes retrieved from file
Description : Takes in a path file and return all classes read in

71

3.8.2 ItemFactory

[temFactory

+ bootup(world: World)

+ buildStats(item: AllitemValues): Stats
+ instantiateWeapons(world: World,
items: List[AllltemValues])

+ instantiateArmor(world: World, items:
List[AllitemValues])

+ addStats(item: Entity, stats: Stats)

+ getltemsList(path: String):
List[AllitemValues]

Figure 71: ItemFactory Class Diagram

ItemFactory is used on bootup to create all initial items in the game and store
them in memory.
Operations

Operation: bootup(world : World)
Input : world : World - the world to store items
Output : None
Description : Read all necessary input files and create items

Operation: buildStats(item : AllltemValues) : Stats
Input : stats : AllltemValues - a case class with info of item
Output : Returns stats created
Description : Takes in a AllitemValues for Stats and returns the stats class

Operation: getltemsList(path : String) : List[AllltemValues]
Input : path : String - path to a classes file
Output : Returns alist of classes retrieved from file
Description : Takes in a path file for items and returns all items read in

Operation: addStats(item : Entity, stats : Stats)
Input : item : Entity - Entity to add stats to

72

stats: Stats - Stats to add to Entity
Output : None
Description : Adds given stats file to item entity

Operation: instantiateWeapons(world: World, items: List[AllltemValues])
Input : world : World - world to add item entities to
items : List[AllltemValues] - List of weapons items
Output : None
Description : Adds weapons to world

3.8.3 QuestFactory

QuestFactory

+ bootup(world: World)
+ getQuest(path: String): List[Quest]

Figure 72: QuestFactory Class Diagram

QuestFactory is used on bootup to create all initial quests in the game and store
them in memory.
Operations

Operation: bootup(world : World)
Input : world : World - the world to store quests
Output : None
Description : Read all necessary input files and create quests

73

Operation: getQuest(path: String)
Input : path : String - file of stored quests
Output : Returns a List[Quest] of quests loaded in
Description : Adds quests to game

3.8.4 GraphFactory

GraphFactory

+ finalMap: TileMap

+ convertPositionToGrid(position: Position, ratio:
Float): Tuple[Int][Int]

+ inbounds(max: Int, indexes: Int): Boolean

+ generateGraph(world: World): Node[][]

Figure 73: GraphFactory Class Diagram

GraphFactory is used with the Al components to see if a Al’s position is in the
map and to generate a graph of allowable positions
Operations

Operation: convertPositionToGrid(position: Position, ratio:Float)
Input : position: Position - the position to use
ratio: Float - Ratio to divide position by
Output : Returns graph of allowable positions
Description : Convert the position to a grid

Operation: generateGraph(world: World)
Input : world: World - world to collect tilemap from
Output : Returns a 2D array of nodes
Description : Generates a graph of nodes

Operation: inbounds(max: Int, indexes: Int*)
Input : max: Int - max length to check against
indexes: Int* - list of indexes to check inbounds Output : Returns boolean if one
does not match
Description : Checks if list of indexes is in range

74

3.8.5 EntityFactory

EntityFactory

+ attributel:type = defaultValue
+ attribute2:type
- attribute3:type

+ loadCharacter(world : World,
webSocket: WebSocketFrameEvent,
entityld: String, characterName: String, x:
Int, y: Int, actor : ActorSelection)

+ createRoom(world : World, roomld : Int,
tileMap : TileMap)

+ loadRoomFromJson(world : World,
roomld : Int, jsonFile : String) : Entity

Figure 74: EntityFactory Class Diagram

EntityFactory is used to create the initial rooms files and import them into the
world and also used to create all character entities.
Operations

Operation: loadCharacter(world : World, webSocket: WebSocketFrameEvent,
entityld: String, characterName: String, x: Int, y: Int, actor : ActorSelection)
Input : world : World - the world to add player entity
entityld: String - the database id for the player
characterName: String - the players name
x: Int - the x coordinate of player
y: Int - the y coordinate of player
actor : ActorSelection - the Connection to the player computer
Output : None
Description : Create character entity and create components based on given in-
formation

Operation: createRoom(world : World, roomld : Int, tileMap : TileMap)
Input : world : World - the world to add room too
roomld: Int - the Id to give to room
tileMap : TileMap - The tilemap component to add to the room

75

Output : None
Description : Creates room entity and gives entity roomld and tilemap compo-
nent

Operation: loadRoomFromJson(world : World, roomld: Int, jsonFile : String)
: Entity
Input : world : World - the world to add room too
roomld : Int - the Id to give to room
jsonFile : String - file to read and create room with
Output : Returns created room Entity
Description : Takes inroom JSON File and reads in values and creates Entity with
it

4 Network System

This section defines the networking system which is responsible for receiving,
interpreting, and processing network messages coming from the frontend. Ad-
ditionally the network system is provides services for login, character creation,
character selection, and the world editor. The networking system distributes
work from a NetworkMessagelnterpreterSupervisor which splits JSON messages
from the frontend to a pool of NetworkMessagelnterpreters each of which in-
dividually converts the partition of messages it has received into different Net-
workMessages. These NetworkMessage are then added to the NetworkMes-
sageQueue. Once per frame rate the game loop flushes all the messages out of
the queue and sends them to the NetworkMessageProcessorSupervisor. This
supervisor in turn distributes them among a pool of NetworkMessageProces-
sors.

76

4.1 NetworkMessageQueue

NetworkMessageQueue

+ messages :
ArrayBuffer[NetworkMessage]

+ flushMessages
+ addInterpretedMessage(message :
NetworkMessage)

Figure 75: NetworkMessageQueue Class Diagram

NetworkMessageQueue is an actor that only accepts two types of messages.
These messages are described below. The only member of this actor is an ar-
ray called messages which stores case classes of type NetworkMessage.

Operation: AddInterpretedMessage(message: NetworkMessage)
Input: message: NetworkMessage - The message to be added to the queue.
Output: None
Description: Adds the message to the queue.

Operation: FlushMessages()
Input: none
Output: an array full of all the messages stored in the queue since the last flush.
Description: Returns the messages that have been stored since the last flush and
empties the queue.

4.2 NetworkMessagelnterpreter

Requirements met: 4.2

77

NetworkMessagelnterpreter

+ queue : ActorRef

+ interpretMessage(wsFrame :
WebSocketFrameEvent)

Figure 76: NetworkMessagelnterpreter Class Diagram

NetworkMessagelnterpreter is an actor which only accepts one type of mes-
sage containing the case class InterpretMessage. InterpretMessage contains a
string which is currently JSON. This may be optimized later to decrease band-
width usage. However for now the JSON must contain an object with a field
"type". This type field is then sent through a switch. The output of each case is
a case class deriving from NetworkMessage which is sent to the NetworkMes-
sageQueue actor instead of being outputted in a more traditional manner. The
follow cases contain the other fields that must be specified along with the type
field for each type.

Operation: interpretMessage(wsFrame: WebSocketFrameEvent
Input: wsFrame: WebSocketFrameEvent - The web socket the user connect with.
Output: Depends on the type of the message.
Description: Reads the message out of the WebSocket frame and extracts the
type. It then matches on the type and handles it in the following ways.

Case: "init"(characterName: String)
Input: characterName: String - The name of the character to be added to the
world.
Output: Adds AddNewCharacter and SocketCharacterMap messages to the queue.
Description: Creates an id for the character. It passes that id into the queue in
the AddNewCharacter message with the characterName, the WebSocket, and
starting positions. It also passes the character id and web socket to the queue
via a SocketCharacterMap.

Case: "move"(start: boolean, dir: Int)
Input: start: boolean - Whether the action is starting or stopping.
dir: Int - Aninteger value O-7. O is up and each subsequent value is 45 degrees to
the right of the previous.

78

Output: Adds a MoveMessage to the queue containing the WebSocket, a MoveDi-
rection, and start.

Description: Converts the dir int to a MoveDirection which is UpDirection, Up-
RightDirection, etc.

Case: "attack”()
Input: none
Output: Adds an attack message to the queue.
Description: The WebSocket is passed into the queue so that it can use it to look
up which character issued the attack.

Case: "chat"(message: String, receiverName: String)
Input: message: String - The chat message to be sent.
receiverName: String - The name of the character the message is being sent to.
Output: Adds a ChatMessage to the queue which contains the message, the re-
ceiverName, and the WebSocket of the sender.
Description: the WebSocket is passed into the queue so that it can use it to look
up which character sent the message.
Requirements met: 3.3.10.1.2

Case: "open"(containerld: String)
Input: containerld: String - The id of the container that is being opened by the
character.
Output: Adds an OpenMessage to the queue.
Description: Passes the containerld and the WebSocket of the opener to the
gueue via the OpenMessage.

79

4.3 NetworkMessageProcessor

NetworkMessageProcessor

+ actorSystem : ActorSystem

+ world : World

+ socketMap : ConcurrentMap[String,
String]

+ characterTable : ActorOf[new
CharacterTable]

processMessage(message :
NetworkMessage)

Figure 77: NetworkMessageProcessor Class Diagram

The NetworkMessageProcessor receives NetworkMessages from the game loop
and processes them in a variety of ways. Depending on the subtype of the Net-
workMessage it is processed differently. The following cases show these differ-
ent ways of processing NetworkMessages. These NetworkMessages store val-
ues which are essentially parameters to the case statement.

Name Type Description

actorSystem ActorSystem The Akka Actor

which stores all the actors.

String]

world World World which all entities be-
longs to.
socketMap ConcurrentMaplString, Maps character ids to the id

of their WebSocket connec-

tion.

Case: AddNewCharacter(webSocket: WebSocketFrameEvent, id: String,
characterName: String, x: Int, y: Int)
Input: webSocket: WebSocketFrameEvent - The WebSocket the character is con-
nected to.
id: String - the entity id of the character to be added to the world. Not to be con-
fused the id property from the database.
characterName: String - the name of the character to be added.
Output: Writes aninitial message to the WebSocket so the frontend can load the
game.
Description: Loads the character out of the database and creates an entity for it.
Calculates level and adds the character to the world.

80

Case: AttackMessage(webSocket: WebSocketFrameEvent)
Input: webSocket: WebSocketFrameEvent - The WebSocket the character is con-
nected to.
Output: None
Description: Retrieves the character entity that is mapped to the WebSocket. It
then spawns an attack entity in front of that character. Any entities who collide
with that attack entity suffers the effects of that attack.

Case: OpenMessage(webSocket: WebSocketFrameEvent, containerld: String)
Input: webSocket: WebSocketFrameEvent - The web socket the character is con-
nected to.
containerld: String - The id of the container entity which is being opened.

Output: Writes a message to the WebSocket informing the frontend that the
container has been opened.

Description: Removes the items from the container entity specified by containerld
and puts them in the player’s inventory.

Case: SocketCharacterMap(webSocket: WebSocketFrameEvent, id: String)
Input: webSocket: WebSocketFrameEvent - The WebSocket the character is con-
nected to.

id: String - The id of the character entity which is being added to the socketMap.
Output: None

Description: Adds an entry to the socketMap linking the character entity id to
the WebSocket id. This allows for lookup of characters based on WebSockets.

Case: ChatMessage(webSocket: WebSocketFrameEvent, message: String,
receiverName: String)
Input: webSocket: WebSocketFrameEvent - The WebSocket the character is con-
nected to.
message: String - The chat message that is being sent.
receiverld: String - The id of the character entity which the chat message is sent
to.
Output: Writes a chat message to the receiving character’s WebSocket. Also
writes the message to the database.
Description: Looks up the sending character by the WebSocket id. Sends the
chat message to the receiving character. Stores the message and both charac-
ters in the databse.

81

4.4 SockoServer

The SockoServer handles all requests from the frontend. It’s only operation "run"
sends handles requests differently based on whether they are an HTTPRequest
or WebSocketFrame. HTTPRequests are further handled based on the path. Re-
quirements met: 3.1, 3.2

WebSocketFrame When a WebSocketFrame comes it is simply sent tothe
NetworkMessagelnterpreter wrapped within a InterpretMessage(wsFrame) case
class where wsFrame is the WebSocket.

Path: /login Sends a LoginPost(httpRequest) message to the Authorization-
Processor.
Path: /register Sends a RegisterPost(httpRequest) message to the Authoriza-
tionProcessor.
Path: /chars Sends a CharactersPost(httpRequest) message to the Authoriza-
tionProcessor.

4.5 AuthorizationProcessor

The AuthorizationProcessor is responsible for handling user actions outside of
the game world. These actions are received at different routes. The Authoriza-
tionProcessor receives different messages from the SockoServer. These mes-
sages are handled the following ways:

Case: LoginPost(request: HttpRequestEvent)
Input: request: HttpRequestEvent - The HTTPRequest which user sent.
username: String - An encrypted username for the user.
password: String - An encrypted password for the user.
Output: If the credentials are valid a HTTP 200 response with a token which can
be used for further secure communication. If the credentials are invalid then a
HTTP 401 response is outputted.
Description: Validates the user’s credentials and either returns an authorization
tokenor aHTTP 401 response.

Case: RegisterPost(request: HttpRequestEvent)
Input: request: HttpRequestEvent - The HTTPRequest which user sent.
username: String - An encrypted username for the user.
password: String - An encrypted password for the user.
Output: A 200 HTTP response if the username is not taken or a 401 HTTP re-
sponse ifitis.
Description: Registers the user within the database if the username is not taken.

82

Case: CharactersPost(request: HttpRequestEvent)
Input: request: HttpRequestEvent - The HTTPRequest which user sent.
token: String - The authorization token that was generated upon login. Output:
A list of character data containing each character’s name, level, and class.
Description: Looks up all the characters associated with the user’s account and
returns themin a JSON list.

5 Ayai Web Application

5.1 Overview

This section covers the portion of the application that handles account details
outside of the game client and world editor. The user interacts with these mod-
ules to handle character creation, character selection, and account settings.

5.2 LoginPage

Requirements met:
3.1.1,31.2,3.13,3.14,3.15,3.1.6

The login module handles account registration and authenticating users
information. Users enter their information and choose to either login or register
with the information after being validated by the system. After this, the user is
sent to the the character selection screen.

83

5.3 Character Creation

User is at the character
selection screen

User clicks
character creation
button

User chooses a
class

User reviews
stats and skills

Wants
to continue?

Else

Satisfied with selection?

User types in a
character name

Valid username?

Else:

User is okay with all information?

User submits
User cancels
information

Character is not
created

Character is created

Figure 78: Activity diagram for creating a character

Requirements met:
3.2.1.6,32.21,3.22.2,3.2.2.3,3.22.4,3.2.2.5,3.2.2.6,3.2.2.7,3.2.2.7,3.2.2.8,
3.2.2.9,3.2.2.10,3.2.2.11

This module allows users to create characters to play in the game. Users are
presented with a list of characters and their descriptions. Once they choose
their desired class, they choose an available character name and submit their
preferences.

84

5.4 Character Selection

User is at character selection

screen

L

Character

exi

sts

Figure 79: Activity diagram for selecting a character

Requirements met:
3.2.1.1,3.2.1.5,3.2.1.6

This module allows users to select their character. Once they have made their

Else

]

User creates a
character

i

User chooses a
character

i

User loads in the
game assets

i

User spawns in
the world

|

User is at the game screen

choice, they load into the game and begin playing.

85

5.5 Changing Settings

User is logged in

User clicks

settings

Else?

User needs a

Else?:

User needs a

Valid email?

User is satisfied?

User saves

new Tnall? new paiswurd'?
User sets a new User sets a new
email address password

User cancels

Elea?

Con?lrm?

Else?

User is at previous screen

Figure 80: Activity diagram for changing account settings

Requirements met:
3.2.3.1,3.2.3.2,3.2.3.3,3.2.34,3.2.3.5

This module allows users to change their settings. They are presented with a
form that allows them to set their email address and password.

86

6 Ayai World Editor
6.1 Searching

User is in the world editor

User focuses the
search bar

4

Else—O—Finishe typing?

User unfocuses
the search bar

User types a
character

User clicks a
result

Figure 81: Activity diagram for searching the world editor

User is finished searching

Requirements met:
2.1.1,21.2,2.1.3,2.1.4,2.1.5

This module allows users to search for entries within the world editor. As users
type, the system makes suggestions to help them find what they are looking for.

87

6.2 Creating and Editing a New Entry

User is at the world editor
screen

Entry exists?
?:
IS&arch.%—T

User finds result
by searching

User goes to User goes to
appropriate
category page

appropriate
category page

User clicks User creates new
existing entry entry
-~/

pE—

User loads entry
page
~—

User makes
changes

[
Use| satisified?—€>—g|se User wants
more changes?

Else

User saves User deletes

entry

entry

Confirm action?

User finished editing entry

Figure 82: Activity diagram for adding an entry to the world editor

88

Requirements met:
21,2.2,2.3,24,25,2.6

This module allows users to add the data that defines the game. Entries are
objects such as classes, items, and spells. Once in the editor section, a user
searches for an existing entry or uses the menu (as defined in the Ayai Software
Requirements Document). To create a new entry, a user creates a new entry by
going to that category’s overview page where they find a button to create a new
entry. At this point, they make changes that are relevant for that category. The
user saves or cancels any changes after they finish.

7 Game Client

7.1 Overview

Figure 83: Game Client - UML Diagram

The Game Client is the frontend implementation of the Ayai project. It isa browser
game leveraging WebGL, HTML5 canvas and WebSocket technologies. The Game
Client uses WebSockets to send requests to the server and receive responses,
interpreting the data it receives to render the views in either WebGL canvas
(Sprites and TileMaps) or HTML elements (Ul Elements).

The game client makes extensive use of the open source JavaScript project
Phaser.js (http://phaser.io/) in the following areas:

89

e Rendering the map and entity sprites in WebGL
e Mouse/Keyboard input
e Audio (Music and Sound Effects)

The full documentation for Phaser.js can be found here: http://gametest.mobi/phaser/docs/Phaser.html

90

7.2 Graphics

—

Display

+ unitframes : Array[Unitframe]
+ inventory : Inventory

+ actionBar : ActionBar

+ chat: Chat

+ questLog : QuestLog

+ peopleList : PeopleList

- tilemap: Phaser.Tilemap

+ toggle()

<
+ renderMap()
UlElement
-isOpen:boolean
+ toggle()
+ update(Json)

Unitframe Inventory ActionBar
-isOpen:boolean -isOpen:boolean -isOpen:boolean
+entityld: string

+toggle() +toggle()
+ update(Json) + update(Json) + update(Json)
Chat Questlog PeopleList

-isOpen:boolean

+ toggle()
+ update(Json)

-isOpen:boolean
+ questList:Array[Quests]

+ toggle()

+ update(Json)
+acceptQuest(Quest)

-isOpen:boolean

+ toggle()
+ update(Json)

Quest

+ name: string

+ description: string
+level: int
+rewards : {
experience: int,
gold: int,

items :[{ item_id: int
count: int}]

finished : Boolean

Figure 84: Game Client - UML Diagram - Graphics

91

7.2.1 Display

Attributes

Name Type Description

unitFrames Array[Unitframe] An array containing a refer-
ence to each Unitframe, in-
cluding player, target, and
group unitframes

inventory Inventory Reference to the singleton
Inventory object

actionBar ActionBar Reference to the singleton
ActionBar object

chat Chat Reference to the singleton
Chat object

questLog QuestlLog Reference to the singleton
QuestLog object

peopleList PeopleList Reference to the singleton
PeopleList object

tileMap Phaser.Tilemap Reference to renderable
Phaser tilemap - constructed
with a Tiled JSON object

Operations

Operation: renderMap(tileset: string, tilemap: string)
Input : tileset : string - name of the tileset loaded by Phaser
tilemap : string - name of the tilemap loaded by Phaser

Output : None

Description : Indexes the loaded tileset and tilemap by their names, queries the
browser for its dimensions and sets up the game camera/entities, then passes the
tilemap to Phaser to be rendered in WebGL

7.2.2 UlElement

Attributes
Name Type Description
isOpen boolean A flag that denotes whether
or not this Ul Element is
open and should be shown on
screen
Operations

Operation: toggle()

92

Output : None

Description : Opens the Ul element if isOpen is false and sets isOpen to true.

Closes the Ul element if isOpen is true and sets the isOpen to false.

Operation: update(json)
Input : json: string
Output : None

Description: Synchronizes the Ul element on the given JSON, updating the view

with the new values.

7.2.3 UnitFrame

Attributes

Name Type Description

isOpen boolean A flag that denotes whether
or not this Ul Element is
open and should be shown on
screen

entityld string The id of the entity whose vi-
tals this unitframe is tracking

Operation: toggle()
Output : None

Description : Unused by Unitframes, these elements cannot be hidden by the

player

Operation: update(json)
Input : json: string
Output : None

Description: Synchronizes the Ul element on the given JSON, updating the view
with the new values. Updates the health, mana, experience, and status effect

views on the unitframe.

Requirements met: 3.3.2,3.3.3,3.3.6.1

7.24 Chat
Requirements Met: 3.3.10, 3.8.2

Attributes

93

Name

Type

Description

isOpen

boolean

A flag that denotes whether
or not this Ul Element is
open and should be shown on
screen

Operation: toggle()
Output : None

Description : Unused by Chat, this element cannot be hidden by the player

Operation: update(json)
Input : json: string
Output : None

Description: Synchronizes the Ul element on the given JSON, updating the view
with the new values. Updates the chat messages that have been sent to the

player.

7.2.5 Inventory

Requirements Met: 3.3.6.1, 3.3.9.1, 3.3.9.4, 3.3.9.2, 3.3.9.3, 3.3.9.6.1, 3.3.9.6.2,

3.3.9.7,3.3.95
Attributes
Name Type Description
isOpen boolean A flag that denotes whether

or not this Ul Element is
open and should be shown on
screen

Operation: toggle()
Output : None

Description : Unused by Chat, this element cannot be hidden by the player

Operation: update(json)
Input : json: string
Output: None

Description: Synchronizes the Ul element on the given JSON, updating the view
with the new values. Updates the chat messages that have been sent to the

player.

94

7.2.6 QuestlLog

Name

Type

Description

isOpen

boolean

A flag that denotes whether
or not this Ul Element is
open and should be shown on
screen

quests

Array[Quest]

The list of quests that the
player has accepted

Operation: toggle()
Output : None

Description : Opens the Ul element if isOpen is false and sets isOpen to true.
Closes the Ul element if isOpen is true and sets the isOpen to false.

Operation: update(json)
Input : json: string
Output : None

Description: Synchronizes the Ul element on the given JSON, updating the view
with the new values. Updates the list of quests that the player has accepted.

7.2.7 Quest

Name Type Description

name string Name of the quest

description string Description of the quest

level int Level of the quest

rewards Object JavaScript object containing
information for experience,
gold, and items received for
completing the quest

finished boolean Flag which indicates whether
the player has completed this
quest

Operation: toggle()
Output : None

Description : Opens the Ul element if isOpen is false and sets isOpen to true.
Closes the Ul element if isOpen is true and sets the isOpen to false.

Operation: update(json)
Input : json: string
Output : None

Description: Synchronizes the Ul element on the given JSON, updating the view
with the new values. Updates the list of players in the same room as the player.

95

7.2.8 Peoplelist
Requirements Met: 3.3.6.3, 3.8.1

Name

Type

Description

isOpen

boolean

A flag that denotes whether
or not this Ul Element is
open and should be shown on
screen

Operation: toggle()
Output : None

Description : Opens the Ul element if isOpen is false and sets isOpen to true.
Closes the Ul element if isOpen is true and sets the isOpen to false.

Operation: update(Json)
Input: json: string
Output : None

Description: Synchronizes the Ul element on the given JSON, updating the view
with the new values. Updates the list of players in the same room as the player.

7.2.9 Settings Menu

Name

Type

Description

isOpen

boolean

A flag that denotes whether
or not this Ul Element is
open and should be shown on
screen

Controls

Keys[Quest]

The list of keys bound to their
functions.

Operation: toggle()
Output : None

Description : Opens the Ul element if isOpen is false and sets isOpen to true.
Closes the Ul element if isOpen is true and sets the isOpen to false.

Operation: update(json)
Input : json: string
Output: None

Description: Synchronizes the Ul element on the given JSON, updating the view

96

with the new values. Updates the list of keys and their bindings.

97

7.3 Game

Ayai

+ playerld: String

+ connection:Connection

+ inputHandler:InputHandler
+ display:Display

InputHandler

+ boundKeys: Array[PhaserKey]

+registerKeyPresses()

<> + gan face face

+ create()

+ preload()

+ renderMap(tileset, tilemap, options)
+ placeNpcs()

- _msgReceived(webSocketEvent)

GameStatelnterface

+ character : PlayerCharacter
+ entities : Array[Entity]
+target: Entity

+ update()

+ sendMovement()

+ updateEntities(String)

+ addCharacter(json:String)

+ removeCharacter(json:String)

+ handleKeylnputEvent(event:Event)
+ sendAttack()

Entity
- sprite: Phaser.Sprite
- type: int
+id: string

+ position { x: int, y: int
+ health {currHealth: int, maxHealth: int}
+ mana {currMana: int, maxMana: int}

+ sync(json: string)
+ setAnimation(action: string)

|

PlayerCharacter

NonPlayerCharacter

- sprite: Phaser.Sprite

-type: int
+id: string

- type: int
+id: string

- sprite: Phaser.Sprite

+ position { x: int, y: int }
+ health {currHealth: int, maxHealth: int}
+ mana {currMana: int, maxMana: int}

+ position { x: int, y: int }
+ health {currHealth: int, maxHealth: int}
+ mana {currMana: int, maxMana: int}

+ sync(json: string)
+ setAnimation(action: string)

+ sync(json: string)
+ setAnimation(action: string)

Figure 85: Game Client - UML Diagram - Game

98

7.3.1 Ayai

Attributes

Name Type Description

playerld String The players ID given by the
server

connection Connection Games connection object

display Display Games display object

gameStatelnterface GameStatelnterface Games singleton copy of the
gameStatelnterface object.

Operation: preload()
Output : None
Description: Starts preloading all the assets. Calls create when the assets are
finished loading.

Operation: create()
Output : None
Description: Creates all the Ul elements for the game after the assets are loaded
by preload.

Operation: _msgReceived(msg:Event)
Output : None
Description: Called when a message is received on the websocket connection.
Dispatches the message to the correct location based on the type of message re-
ceived.

7.3.2 GameStatelnterface
Requirements met: 3.3.4, 3.3.5, 3.3.6, 3.3.7, 3.3.8 Attributes

Name Type Description

character PlayerCharacter The sessions current charac-
ter

entities Array[Entity] Sprite given to phaser for
rendering

target Entity Current entity which is se-
lected in the game

99

Operations

Operation: update()
Output : Void
Description : Calls Phaser.JS to rerender the stage.

Operation: sendMovement()
Output : Void
Description : Use phaser.js to detect which keys are down and send the correct
movement messages to the message sender.

Operation: updateEntities(json:String)
Input: json: JSON representation of entities to be updated in string format. Out-
put : Void
Description : Update the position of entities. Also handle the creation and dele-
tion of entities.

Operation: addCharacter(json:String)
Input: json : JSON representation of character to be added. Output : Void
Description : Add character entity to GameStatelnterfaces list of entities.

Operation: removeCharacter(json:String)
Input: json : JSON representation of character to be added. Output : Void
Description : Remove character entity to GameStatelnterfaces list of entities.

Operation: handleKeylnputEvent(inputEvent:InputEvent)
Input: json : JSON representation of character to be added. Output : Void
Description : Handle keyboard inputs and send corresponding messages to the
message sender based on which keys are pressed.

Operation: sendAttack()
Output : Void
Description : Send attack message to message sender.

7.3.3 InputHandler
Requirements Met: 3.5

100

Attributes

Name

Type

Description

boundKeys

Array[PhaserKey]

List of bound keys.

Operation: registerKeyPresses()
Output : Void

Description : Iterates over the bound keys and register them with the phaser

keypress detection functions.

101

74 Net

Connection

-WebSocket:WebSocket

+Connection(string url)
+send(msg:String)
+connect()

MessageReceiver

+ message:Object

MessageSender

+ message: String
+ webSocket: WebSocket

+ MessageSender(msg: string)
+ encodeMessage(String)

+ parseMessage()
+ messageReceiver(msg:string)
+ createEvent().event

Figure 86: Game Client - UML Diagram - Net

7.4.1 Connection

Attributes
Name Type Description
webSocket WebSocket The websocket object for the

connection to the backend

102

Operation: Connection(urlString: String)
Input : urlString : String : string of the url of the backend server

Output : Void

Description : Constructor for this class which takes the url of the backend server.

Operation: send(msg:String)

Input : msg: String : string of the message to be sent.

Output : Void

Description : Sends the message through the websocket to the backend.

Operation: connect()
Output : Void

Description : Creates the websocket object and starts the connection.

7.4.2 MessageReceiver

Attributes
Name Type Description
message Object Javascript Object version of
the message after parsing.

Operation: MessageReceiver(message: String)

Input : message : String : JSON string representation of the message. Output :

Void

Description : Constructor for this class which calls parse on the passed in mes-

sage string.

Operation: parseMessage(msg:String)

Input : msg: String : text to parse Output : Void

Description : Parses the passed in message and sets the class attribute message

to the parsed object.

Operation: createEventy()
Output : Event

Description : Creates a message received event based on the message which has

been parsed.

103

8 Database Design

The following is a UML style database diagram. It uses standard conventions.
The only exception is the tag EK. EK stands for entity key. An entity key refers to
an entity defined in the game files.

Character

Chat

+id: autonumber <<PK=>
+name: varchar(20)
+classMame: char(10)

—d]

+id: autonumber <<PK=>>
+message: varchar(255)
+zender_id: long <<FK==>
+receiver_id: long <<FK==
+is_received: boolean
+time_received: datetime

Token

+experience: int
+aoocuunt__|d: long <<FK>> e Account
+room_id: long <<EK>=
+pos_x:int +id: autonumber <<PK=>= B—e
+pos_y:int +username: varchar(20)
— -password: varchar{20}
InventoryEntry
+id: autonumber <<PK>> 5

+character_id: long <<FK=>>
+item_id: long <<EK>>

Equipment

+id: autonumber <<PK=>>

+id: autonumber <P ==
+account_id: long <<FK>=

+token: char(36)

+character_id: long =<FK==
+item_id: long <<EK>>
+slot: varchar(20)

Figure 87: Database Diagram

Table: Account
id: autonumber - A unique id for each account.
username: varchar(20) - The account’s username. Must be 6-20 characters.
email: varchar(20) - The user’s email address. Must be standard email format-
ting.
password: varchar(20) - The user’s password. Must be 8-20 characters.
Description: Each user of the system creates one account. This account is used
for authentication and linking all the user’s data.

Table: Token
id: autonumber - A unique id for each token.
account_id: long - The account the token belongs to. This is a foreign key refer-
encing the id field of the account table.
token: char(36) - The authentication token that is created when the user logs in.
This is always 36 characters long.

104

Description: Each time a user logs in a token is created, sent to them, and stored
in the database. The client uses this token to verify they are still the same user.

Table: Chat
id: autonumber - A unique id for each chat.
sender_id: long - The account that sent the chat message. This is a foreign key
referencing the id field of the account table.
message: varchar(255) - The chat message that was sent.
receiver_id: long - The account chat message was sent to. This is a foreign key
referencing the id field of the account table.
is_received: boolean - Indicates whether or not the chat has been received by the
receiver account.
time_sent: datetime - The time the message was sent.

Table: Character
id: autonumber - A unique id for each character.
account_id: long - The account the character belongs to. This is a foreign key ref-
erencing the id field of the account table.
name: varchar(20) - A unique name for the character.
className: char(10) - The class of the character.
experience: int - The character’s progress towards a certain level. The level at-
tribute is calculated from this number using the experience array from the config
files.
room_id: long - The id of the room the character is in. This id references the con-
fig files from which all the game content is loaded.
pos_x: int - The x position of the character within the room.
pos_y: int - The x position of the character within the room.

Table: InventoryEntry
id: autonumber - A unique id for each inventory entry.
character_id: long - The character the item belongs to. This is a foreign key refer-
encing the id field of the character table.
item_id: long - The item that belongs to the character. This id references the con-
fig files from which all the game content is loaded.

Table: Equipment
id: autonumber - A unique id for each equipment entry.
character_id: long - The character the item belongs to. This is a foreign key refer-
encing the id field of the character table.
item_id: long - The item that belongs to the character. This id references the con-
fig files from which all the game content is loaded.
slot: varchar(20) - This is the slot that the item is equipped in. When an item is

105

equipped it is removed from the inventory table and added to the equipment ta-
ble. When it is unequipped this process is removed.

9 Traceability Matrix

Requirements Document Number

Design Doc Reference Number

2.1 (Search) 6.1

2.2 (Menu) 7.2,6.2

2.3 (Overviews) 7.1,6.2

2.4 (Entries) 6.2

2.5 (Assets) 7.3,6.2

2.6 (Assets) 7.2,6.2

3.1 (LoginScreen) 5.3,4.3,6.2

3.2 (Account) 5.3,4.3,4.4,5.5,6.2

3.3 (GameScreen) 71,72, 4,3.1,3.2,3.3,34,3.5, 3.5, 3.6, 3.7,
3.8

3.4 (Settings Menu) 7.2

3.5 (Control Screen) 7.2.9

3.6 (Help Screen) 7.2

3.7 (Sound Screen) 7.2

3.8 (Other Players Screen) 7.2.8

3.9 (Journal Screen) 7.2.6,7.2.7

4.1 (Al System) 3.4.14

4.2 (Entity Actions) 4.2

Glossary

A* a pathfinding algorithm that finds the most efficient path between 2 points.

106

ACID compliant A set of properties that guarantee that database transactions
are processed reliably (Atomicity, Consistency, Isolation, Durability).. 106

Action A spell or ability a character or an item can perform. 106

Administrator User with ability to ban users or give access to certain players.

106

Algorithm a step by step procedure for calculations and data processing. 106

Animation rapid display of static pictures based on certain player movement

and commands. 106

ArrayBuffer A mutable list.. 106

Authentication verify the users credentials on the server to give access to game
and characters. 106

Backend any processing that takes place remotely from the players location.
106

Breadcrumb A navigation aid which allows users to keep track of their locations
within the program. 106

Character A single entity in an MMORPG game world which can interact with
the game world. 106

Character Level Measures the overall effectiveness of a character. As the char-
acter’s level increases, so does the value of their statistics. 106

Character Statistics (Stats) Measure how effective a given character is at cer-
tain tasks. Example: Strength, Agility, Intellect. 106

Class a method of differentiating game characters that have different sets of
abilities and statistics. 106

Component A structure of data which is held inside of an entity. 106

Cooldown after an attack has been down, there is a time based countdown be-
fore the player can do that same attack again. 106

Damage A reductioninacharacter’s health. 106

Damage Type The type of damage that is being dealt to a character. Examples:
fire, physical, etc. 106

Database organized collection of data and supports processing of information.
106

Effect A magical component which applies a status to its target. 106
Entity Alist of components. 106

Entry Aninstance of content that defines the objects and actions that make up
the game world. 106

Experience A value that measures a character’s progress to the next Character
Level. 106

Faction An organization within the game which NPCs may belong to. 106

Frontend any processing that takes place on the players computer/application.
106

107

Game State The complete knowledge of everything contained within the game
at a current point in time. 106

Game World The collection of all rooms, or zones and the characters they con-
tain which are managed by the server(s). 106

Health A statistic which measures how much damage a character can sustain
before the character dies. 106

HTTP Secure (HTTPS) Animplementation of HTTP with enhanced security.. 106

HyperText Mark Up Language (HTML) The latest revision of a markup language
used to organize content for the web. 106

HyperText Transfer Protocol (HTTP) An application protocol for distributed, col-
laborative, hypermedia information systems.. 106

Java Virtual Machine (JVM) Java Virtual Machine. 106
Latency time delay experienced by a system. 106

Mana aresource that a character can expend to use different abilities. 106

Massively Multiplayer Online Game (MMO) Anonline video game inwhich there
is a central game world managed by one or more servers to which many
players, or clients, can connect in order to interact with one another. 106

Melee ashortrange attack that is only limited to the areaimmedietely around a
character. 106

Non-Player Character (NPC) Non-playable characterswhos actions are processed
by server(s) of an MMORPG. 106

Player A player isapersonwho controls an avatar. 106

Player Character (PC) Therepresentation of a playerinthe MMORPG game world.
106

PostgreSQL An open-source object-relational database management system (OR-
DBMS) with an emphasis on extensibility and standards-compliance.. 106

Prop A purely aesthetic visual element which has no impact on game play. (Ex-
ample: abush.). 106

Quest A missionwith one or more objectives, usually resultingin areward and/or
story advancement when all objectives are complete. 106

108

Role Playing Game (RPG) A game in which players control characters intended
to represent themselves. 106

Room One piece of the game world. Rooms will be connected by portals which
will be the only way to enter or leave aroom. 106

Scala A JVM programminglanguage incorporating object oriented and functional
programming paradigms. 106

Scala Build Tool (SBT) A tool used to compile and run Scala projects. 106
Sprite A smallimage which is used to represent a game entity. 106

Spritesheet A file which has multipleimages representing different stages of an-
imations for a game entity. 106

Status Effect An effect on a character/player/enemy that increases or decrease
a statistic from the normal amount. 106

SuperUser a user with access to all abilities and moderation functions of an ap-
plication. 106

Tilesheet A list of sprites for use in building a map. 106

Web Graphics Library (Web GL) is a javascript API for rendering interactive 3D
graphics and 2D graphics within a compatible browser. 106

109

	Introduction
	Purpose
	Scope
	Context Diagram

	Architecture
	Overview
	Servers
	Web Server
	Authorization Server
	Socko Server
	Database

	Network Message Interpretation/Processing
	Game State
	Systems
	AI System
	NetworkSystem

	Detailed Design
	ECS Game Loop
	World
	Entity
	System
	EntityProcessingSystem
	TimedSystem
	IntervalSystem
	Component
	Game Loop

	Components
	Position
	Actionable
	Attack
	Bounds
	Character
	Frame
	Health
	Inventory
	Velocity
	Time
	Mana
	Stats
	Stat
	Transport
	NetworkingActor
	Respawn
	TileMap
	ItemUse
	Experience
	Cooldown
	Quest
	QuestBag
	Equipment

	Items
	Item
	ItemType
	Weapon
	Weapon

	Systems
	MovementSystem
	CollisionSystem
	HealthSystem
	RespawningSystem
	FrameExpirationSystem
	NetworkingSystem
	NPCRespawningSystem
	LevelingSystem
	StatusEffectSystem
	CooldownSystem
	ItemSystem
	AttackSystem
	RoomChangingSystem
	AISystem

	Status Effects
	Effect
	TimeAttribute
	OneOff
	TimedInterval
	Duration
	Multiplier

	Movement Processes
	Action
	MovementDirection
	MovementDirection Case Classes

	Collision Objects
	QuadTree
	Rectangle

	Factories
	ClassFactory
	ItemFactory
	QuestFactory
	GraphFactory
	EntityFactory

	Network System
	NetworkMessageQueue
	NetworkMessageInterpreter
	NetworkMessageProcessor
	SockoServer
	AuthorizationProcessor

	Ayai Web Application
	Overview
	Login Page
	Character Creation
	Character Selection
	Changing Settings

	Ayai World Editor
	Searching
	Creating and Editing a New Entry

	Game Client
	Overview
	Graphics
	Display
	UIElement
	UnitFrame
	Chat
	Inventory
	QuestLog
	Quest
	PeopleList
	Settings Menu

	Game
	Ayai
	GameStateInterface
	InputHandler

	Net
	Connection
	MessageReceiver

	Database Design
	Traceability Matrix
	Glossary

